12,771 research outputs found

    Euclidean Automata

    Get PDF

    Finite automata with continuous input

    Get PDF
    Euclidean Automata (EA) are finite state computational devices that take continuous parameter vectors as input. We investigate decompositions of EA into simpler Euclidean and classical finite state automata, relate them to better known computational devices such as artificial neural nets and electronic devices, and show that they are plausible Big Mechanism candidates. 1

    Broadcasting Automata and Patterns on Z^2

    Get PDF
    The Broadcasting Automata model draws inspiration from a variety of sources such as Ad-Hoc radio networks, cellular automata, neighbourhood se- quences and nature, employing many of the same pattern forming methods that can be seen in the superposition of waves and resonance. Algorithms for broad- casting automata model are in the same vain as those encountered in distributed algorithms using a simple notion of waves, messages passed from automata to au- tomata throughout the topology, to construct computations. The waves generated by activating processes in a digital environment can be used for designing a vari- ety of wave algorithms. In this chapter we aim to study the geometrical shapes of informational waves on integer grid generated in broadcasting automata model as well as their potential use for metric approximation in a discrete space. An explo- ration of the ability to vary the broadcasting radius of each node leads to results of categorisations of digital discs, their form, composition, encodings and gener- ation. Results pertaining to the nodal patterns generated by arbitrary transmission radii on the plane are explored with a connection to broadcasting sequences and ap- proximation of discrete metrics of which results are given for the approximation of astroids, a previously unachievable concave metric, through a novel application of the aggregation of waves via a number of explored functions

    Continuous cellular automata on irregular tessellations : mimicking steady-state heat flow

    Get PDF
    Leaving a few exceptions aside, cellular automata (CA) and the intimately related coupled-map lattices (CML), commonly known as continuous cellular automata (CCA), as well as models that are based upon one of these paradigms, employ a regular tessellation of an Euclidean space in spite of the various drawbacks this kind of tessellation entails such as its inability to cover surfaces with an intricate geometry, or the anisotropy it causes in the simulation results. Recently, a CCA-based model describing steady-state heat flow has been proposed as an alternative to Laplace's equation that is, among other things, commonly used to describe this process, yet, also this model suffers from the aforementioned drawbacks since it is based on the classical CCA paradigm. To overcome these problems, we first conceive CCA on irregular tessellations of an Euclidean space after which we show how the presented approach allows a straightforward simulation of steady-state heat flow on surfaces with an intricate geometry, and, as such, constitutes an full-fledged alternative for the commonly used and easy-to-implement finite difference method, and the more intricate finite element method
    • …
    corecore