51 research outputs found

    A Zinc Oxide Nanorod Ammonia Microsensor Integrated with a Readout Circuit on-a-Chip

    Get PDF
    A zinc oxide nanorod ammonia microsensor integrated with a readout circuit on-a-chip fabricated using the commercial 0.35 μm complementary metal oxide semiconductor (CMOS) process was investigated. The structure of the ammonia sensor is composed of a sensitive film and polysilicon electrodes. The ammonia sensor requires a post-process to etch the sacrificial layer, and to coat the sensitive film on the polysilicon electrodes. The sensitive film that is prepared by a hydrothermal method is made of zinc oxide. The sensor resistance changes when the sensitive film adsorbs or desorbs ammonia gas. The readout circuit is used to convert the sensor resistance into the voltage output. Experiments show that the ammonia sensor has a sensitivity of about 1.5 mV/ppm at room temperature

    An acetone microsensor with a ring oscillator circuit fabricated using the commercial 0.18 μm CMOS process

    Get PDF
    This study investigates the fabrication and characterization of an acetone microsensor with a ring oscillator circuit using the commercial 0.18 μm complementary metal oxide semiconductor (CMOS) process. The acetone microsensor contains a sensitive material, interdigitated electrodes and a polysilicon heater. The sensitive material is α-Fe2O3 synthesized by the hydrothermal method. The sensor requires a post-process to remove the sacrificial oxide layer between the interdigitated electrodes and to coat the α-Fe2O3 on the electrodes. When the sensitive material adsorbs acetone vapor, the sensor produces a change in capacitance. The ring oscillator circuit converts the capacitance of the sensor into the oscillation frequency output. The experimental results show that the output frequency of the acetone sensor changes from 128 to 100 MHz as the acetone concentration increases 1 to 70 ppm

    Simultaneous Electrochemical Measurement using Paper Fluidic Channel on CMOS Chip

    Get PDF
    This paper described the new system of biosensing using CMOS chip. The system was expected to be used in various circumstances because it was suitable for miniaturization compared to the conventional system. To conduct electrochemical measurements, the new system used paper fluidic channel set on the CMOS chip to transport solution to the on-chip electrodes. The materials of paper fluidic channel were only paper and silicone resin, and these were biocompatible. In experiment, we carried out simultaneous detection of glucose and ethanol in liquid sample solutions on the 5mm square CMOS chip and paper fluidic channel. Furthermore, this system can detect various target molecules in addition to glucose and ethanol, and increase number of simultaneous measurement by adding some more process to the paper and CMOS chip.

    Polymeric Microsensors for Intraoperative Contact Pressure Measurement

    Get PDF
    Biocompatible sensors have been demonstrated using traditional microfabrication techniques modified for polymer substrates and utilize only materials suitable for implantation or bodily contact. Sensor arrays for the measurement of the load condition of polyethylene spacers in the total knee arthroplasty (TKA) prosthesis have been developed. Arrays of capacitive sensors are used to determine the three-dimensional strain within the polyethylene prosthesis component. Data from these sensors can be used to give researchers a better understanding of component motion, loading, and wear phenomena for a large range of activities. This dissertation demonstrates both analytically and experimentally the fabrication of these sensor arrays using biocompatible polymer substrates and dielectrics while preserving industry-standard microfabrication processing for micron-level resolution. An array of sensors for real-time measurement of pressure profiles is the long-term goal of this research. A custom design using capacitive-based sensors is an excellent selection for such measurement, giving high spatial resolution across the sensing surface and high load resolution for pressures applied normal to that surface while operating at low power

    Chemicapacitors as a versatile platform for miniature gas and vapor sensors

    Get PDF
    Recent years have seen the rapid growth in the need for sensors throughout all areas of society including environmental sensing, health-care, public safety and manufacturing quality control. To meet this diverse need, sensors have to evolve from specialized and bespoke systems to miniaturized, low-power, low-cost (almost disposable) ubiquitous platforms. A technology that has been developed which gives a route to meet these challenges is the chemicapacitor sensor. To date the commercialization of these sensors has largely been restricted to humidity sensing, but in this review we examine the progress over recent years to expand this sensing technology to a wide range of gases and vapors. From sensors interrogated with laboratory instrumentation, chemicapacitor sensors have evolved into miniaturized units integrated with low power readout electronics that can selectively detect target molecules to ppm and sub-ppm levels within vapor mixtures

    MME2010 21st Micromechanics and Micro systems Europe Workshop : Abstracts

    Get PDF

    Microfluidic Biosensor Based on Microwave Substrate-Integrated Waveguide Cavity Resonator

    Get PDF
    A microfluidic biosensor is proposed using a microwave substrate-integrated waveguide (SIW) cavity resonator. The main objectives of this noninvasive biosensor are to detect and analyze biomaterial using tiny liquid volumes (3 μL). The sensing mechanism of our proposed biosensor relies on the dielectric perturbation phenomenon of biomaterial under test, which causes a change in resonance frequency and return loss (amplitude). First, an SIW cavity is realized on a Rogers RT/Duroid 5870 substrate. Then, a microwell made from polydimethylsiloxane (PDMS) material is loaded on the SIW cavity to observe the perturbation phenomenon. The microwell is filled with phosphate-buffered saline (PBS) solution (reference biological medium). To demonstrate the sensing behavior, the fibroblast (FB) cells from the lungs of a human male subject are analyzed and one-port S-parameters are measured. The resonance frequency of the structure with FB cells is observed to be 13.48 GHz. The reproducibility and repeatability of our proposed biosensor are successfully demonstrated through full-wave simulations and measurements. The resonance frequency of the FB-loaded microwell showed a shift of 170 MHz and 20 MHz, when compared to those of empty and PBS-loaded microwells. Its analytical limit of detection is 213 cells/μL. Our proposed biosensor is noncontact and reliable. Furthermore, it is miniaturized, inexpensive, and fabricated using simple- and easy-design processes

    CMOS compatible solidly mounted resonator for air quality monitoring

    Get PDF
    Air pollution has become a growing concern around the world. Human exposure to hazardous air pollutants is associated with a range of health problems and increased mortality. An estimated 40,000 early deaths per year are caused by the exposure to air pollutants in the UK alone, which cost over £20 billion annually to individuals and health services1. In this work, novel solidly mounted resonator (SMR) devices were developed for integration in a low-cost, portable air quality monitor for the real-time monitoring of particulate matter and volatile organic compounds (VOCs). Finite element models of the SMRs were developed to aid their design and simulate the response of the sensors to particles and exposure to VOCs. For particle sensing, a SMR based unit was developed, working in a dual mode configuration. The unit was characterised inside an environmental chamber, together with commercial reference instruments, to particles of known size and composition. A detection limit of 20 μg/m3 was found (below the safe exposure limit). To target fine particles (<2.5 μm), a virtual impactor was incorporated into the system. For VOC detection, the SMR devices were functionalised with polymer coatings to detect acetone and toluene vapours (most common VOCs in air). A polymer drop-coating system was developed to complete this aim (polymer film thicknesses <100nm). An automated VOC test station was developed to characterise the SMR based sensors to low ppm concentrations of the target vapours (<200 ppm). The SMR devices demonstrated a limit of detection of 5 ppm to toluene and 50 ppm of acetone (well below the safe exposure limits). A novel CMOS based SMR device, suitable for volume production and monolithic integration, was designed with an integrated microheater and CMOS acoustic mirror. The heater was included to vary the temperature of the sensing area (to enhance the sensitivity of the SMR to a particular VOC through temperature modulation or to clear particles off the surface). The fabricated device (1.9 GHz) exhibited good performance

    Design, fabrication, characterization and reliability study of CMOS-MEMS Lorentz-Force magnetometers

    Get PDF
    Tesi en modalitat de compendi de publicacionsToday, the most common form of mass-production semiconductor device fabrication is Complementary Metal-Oxide Semiconductor (CMOS) technology. The dedicated Integrated Circuit (IC) interfaces of commercial sensors are manufactured using this technology. The sensing elements are generally implemented using Micro-Electro-Mechanical-Systems (MEMS), which need to be manufactured using specialized micro-machining processes. Finally, the CMOS circuitry and the MEMS should ideally be combined in a single package. For some applications, integration of CMOS electronics and MEMS devices on a single chip (CMOS-MEMS) has the potential of reducing fabrication costs, size, parasitics and power consumption, compared to other integration approaches. Remarkably, a CMOS-MEMS device may be built with the back-end-of-line (BEOL) layers of the CMOS process. But, despite its advantages, this particular approach has proven to be very challenging given the current lack of commercial products in the market. The main objective of this Thesis is to prove that a high-performance MEMS, sealed and packaged in a standard package, may be accurately modeled and manufactured using the BEOL layers of a CMOS process in a reliable way. To attain this, the first highly reliable novel CMOS-MEMS Lorentz Force Magnetometer (LFM) was successfully designed, modeled, manufactured, characterized and subjected to several reliability tests, obtaining a comparable or superior performance to the typical solid-state magnetometers used in current smartphones. A novel technique to avoid magnetic offsets, the main drawback of LFMs, was presented and its performance confirmed experimentally. Initially, the issues encountered in the manufacturing process of MEMS using the BEOL layers of the CMOS process were discouraging. Vapor HF release of MEMS structures using the BEOL of CMOS wafers resulted in undesirable damaging effects that may lead to the conclusion that this manufacturing approach is not feasible. However, design techniques and workarounds for dealing with the observed issues were devised, tested and implemented in the design of the LFM presented in this Thesis, showing a clear path to successfully fabricate different MEMS devices using the BEOL.Hoy en día, la forma más común de producción en masa es una tecnología llamada Complementary Metal-Oxide Semiconductor (CMOS). La interfaz de los circuitos integrados (IC) de sensores comerciales se fabrica usando, precisamente, esta tecnología. Actualmente es común que los sensores se implementen usando Sistemas Micro-Electro-Mecánicos (MEMS), que necesitan ser fabricados usando procesos especiales de micro-mecanizado. En un último paso, la circuitería CMOS y el MEMS se combinan en un único elemento, llamado package. En algunas aplicaciones, la integración de la electrónica CMOS y los dispositivos MEMS en un único chip (CMOS-MEMS) alberga el potencial de reducir los costes de fabricación, el tamaño, los parásitos y el consumo, al compararla con otras formas de integración. Resulta notable que un dispositivo CMOS-MEMS pueda ser construido con las capas del back-end-of-line (BEOL) de un proceso CMOS. Pero, a pesar de sus ventajas, este enfoque ha demostrado ser un gran desafío como demuestra la falta de productos comerciales en el mercado. El objetivo principal de esta Tesis es probar que un MEMS de altas prestaciones, sellado y empaquetado en un encapsulado estándar, puede ser correctamente modelado y fabricado de una manera fiable usando las capas del BEOL de un proceso CMOS. Para probar esto mismo, el primer magnetómetro CMOS-MEMS de fuerza de Lorentz (LFM) fue exitosamente diseñado, modelado, fabricado, caracterizado y sometido a varias pruebas de fiabilidad, obteniendo un rendimiento comparable o superior al de los típicos magnetómetros de estado sólido, los cuales son usados en móviles actuales. Cabe destacar que en esta Tesis se presenta una novedosa técnica con la que se evitan offsets magnéticos, el mayor inconveniente de los magnetómetros de fuerza Lorentz. Su efectividad fue confirmada experimentalmente. En los inicios, los problemas asociados al proceso de fabricación de MEMS usando las capas BEOL de obleas CMOS resultaba desalentador. Liberar estructuras MEMS hechas con obleas CMOS con vapor de HF producía efectos no deseados que bien podrían llevar a la conclusión de que este enfoque de fabricación no es viable. Sin embargo, se idearon y probaron técnicas de diseño especiales y soluciones ad-hoc para contrarrestar estos efectos no deseados. Se implementaron en el diseño del magnetómetro de Lorentz presentado en esta Tesis, arrojando excelentes resultados, lo cual despeja el camino hacia la fabricación de diferentes dispositivos MEMS usando las capas BEOL.Postprint (published version

    A Review on Key Issues and Challenges in Devices Level MEMS Testing

    Get PDF
    The present review provides information relevant to issues and challenges in MEMS testing techniques that are implemented to analyze the microelectromechanical systems (MEMS) behavior for specific application and operating conditions. MEMS devices are more complex and extremely diverse due to the immersion of multidomains. Their failure modes are distinctive under different circumstances. Therefore, testing of these systems at device level as well as at mass production level, that is, parallel testing, is becoming very challenging as compared to the IC test, because MEMS respond to electrical, physical, chemical, and optical stimuli. Currently, test systems developed for MEMS devices have to be customized due to their nondeterministic behavior and complexity. The accurate measurement of test systems for MEMS is difficult to quantify in the production phase. The complexity of the device to be tested required maturity in the test technique which increases the cost of test development; this practice is directly imposed on the device cost. This factor causes a delay in time-to-market
    corecore