2,368 research outputs found

    Glottal-Source Spectral Biometry for Voice Characterization

    Get PDF
    The biometric signature derived from the estimation of the power spectral density singularities of a speaker’s glottal source is described in the present work. This consists in the collection of peak-trough profiles found in the spectral density, as related to the biomechanics of the vocal folds. Samples of parameter estimations from a set of 100 normophonic (pathology-free) speakers are produced. Mapping the set of speaker’s samples to a manifold defined by Principal Component Analysis and clustering them by k-means in terms of the most relevant principal components shows the separation of speakers by gender. This means that the proposed signature conveys relevant speaker’s metainformation, which may be useful in security and forensic applications for which contextual side information is considered relevant

    Automatic Detection of Laryngeal Pathology on Sustained Vowels Using Short-Term Cepstral Parameters: Analysis of Performance and Theoretical Justification

    Get PDF
    The majority of speech signal analysis procedures for automatic detection of laryngeal pathologies mainly rely on parameters extracted from time domain processing. Moreover, calculation of these parameters often requires prior pitch period estimation; therefore, their validity heavily depends on the robustness of pitch detection. Within this paper, an alternative approach based on cepstral- domain processing is presented which has the advantage of not requiring pitch estimation, thus providing a gain in both simplicity and robustness. While the proposed scheme is similar to solutions based on Mel-frequency cepstral parameters, already present in literature, it has an easier physical interpretation while achieving similar performance standards

    Exploiting Nonlinear Recurrence and Fractal Scaling Properties for Voice Disorder Detection

    Get PDF
    Background: Voice disorders affect patients profoundly, and acoustic tools can potentially measure voice function objectively. Disordered sustained vowels exhibit wide-ranging phenomena, from nearly periodic to highly complex, aperiodic vibrations, and increased "breathiness". Modelling and surrogate data studies have shown significant nonlinear and non-Gaussian random properties in these sounds. Nonetheless, existing tools are limited to analysing voices displaying near periodicity, and do not account for this inherent biophysical nonlinearity and non-Gaussian randomness, often using linear signal processing methods insensitive to these properties. They do not directly measure the two main biophysical symptoms of disorder: complex nonlinear aperiodicity, and turbulent, aeroacoustic, non-Gaussian randomness. Often these tools cannot be applied to more severe disordered voices, limiting their clinical usefulness.

Methods: This paper introduces two new tools to speech analysis: recurrence and fractal scaling, which overcome the range limitations of existing tools by addressing directly these two symptoms of disorder, together reproducing a "hoarseness" diagram. A simple bootstrapped classifier then uses these two features to distinguish normal from disordered voices.

Results: On a large database of subjects with a wide variety of voice disorders, these new techniques can distinguish normal from disordered cases, using quadratic discriminant analysis, to overall correct classification performance of 91.8% plus or minus 2.0%. The true positive classification performance is 95.4% plus or minus 3.2%, and the true negative performance is 91.5% plus or minus 2.3% (95% confidence). This is shown to outperform all combinations of the most popular classical tools.

Conclusions: Given the very large number of arbitrary parameters and computational complexity of existing techniques, these new techniques are far simpler and yet achieve clinically useful classification performance using only a basic classification technique. They do so by exploiting the inherent nonlinearity and turbulent randomness in disordered voice signals. They are widely applicable to the whole range of disordered voice phenomena by design. These new measures could therefore be used for a variety of practical clinical purposes.
&#xa

    A Framework for Bioacoustic Vocalization Analysis Using Hidden Markov Models

    Get PDF
    Using Hidden Markov Models (HMMs) as a recognition framework for automatic classification of animal vocalizations has a number of benefits, including the ability to handle duration variability through nonlinear time alignment, the ability to incorporate complex language or recognition constraints, and easy extendibility to continuous recognition and detection domains. In this work, we apply HMMs to several different species and bioacoustic tasks using generalized spectral features that can be easily adjusted across species and HMM network topologies suited to each task. This experimental work includes a simple call type classification task using one HMM per vocalization for repertoire analysis of Asian elephants, a language-constrained song recognition task using syllable models as base units for ortolan bunting vocalizations, and a stress stimulus differentiation task in poultry vocalizations using a non-sequential model via a one-state HMM with Gaussian mixtures. Results show strong performance across all tasks and illustrate the flexibility of the HMM framework for a variety of species, vocalization types, and analysis tasks

    Models and analysis of vocal emissions for biomedical applications

    Get PDF
    This book of Proceedings collects the papers presented at the 3rd International Workshop on Models and Analysis of Vocal Emissions for Biomedical Applications, MAVEBA 2003, held 10-12 December 2003, Firenze, Italy. The workshop is organised every two years, and aims to stimulate contacts between specialists active in research and industrial developments, in the area of voice analysis for biomedical applications. The scope of the Workshop includes all aspects of voice modelling and analysis, ranging from fundamental research to all kinds of biomedical applications and related established and advanced technologies
    • …
    corecore