121 research outputs found

    Almost-Commutative Geometries Beyond the Standard Model II: New Colours

    Full text link
    We will present an extension of the standard model of particle physics in its almost-commutative formulation. This extension is guided by the minimal approach to almost-commutative geometries employed in [13], although the model presented here is not minimal itself. The corresponding almost-commutative geometry leads to a Yang-Mills-Higgs model which consists of the standard model and two new fermions of opposite electro-magnetic charge which may possess a new colour like gauge group. As a new phenomenon, grand unification is no longer required by the spectral action.Comment: Revised version for publication in J.Phys.A with corrected Higgs masse

    On randomness in Hash functions

    Get PDF
    In the talk, we shall discuss quality measures for hash functions used in data structures and algorithms, and survey positive and negative results. (This talk is not about cryptographic hash functions.) For the analysis of algorithms involving hash functions, it is often convenient to assume the hash functions used behave fully randomly; in some cases there is no analysis known that avoids this assumption. In practice, one needs to get by with weaker hash functions that can be generated by randomized algorithms. A well-studied range of applications concern realizations of dynamic dictionaries (linear probing, chained hashing, dynamic perfect hashing, cuckoo hashing and its generalizations) or Bloom filters and their variants. A particularly successful and useful means of classification are Carter and Wegman's universal or k-wise independent classes, introduced in 1977. A natural and widely used approach to analyzing an algorithm involving hash functions is to show that it works if a sufficiently strong universal class of hash functions is used, and to substitute one of the known constructions of such classes. This invites research into the question of just how much independence in the hash functions is necessary for an algorithm to work. Some recent analyses that gave impossibility results constructed rather artificial classes that would not work; other results pointed out natural, widely used hash classes that would not work in a particular application. Only recently it was shown that under certain assumptions on some entropy present in the set of keys even 2-wise independent hash classes will lead to strong randomness properties in the hash values. The negative results show that these results may not be taken as justification for using weak hash classes indiscriminately, in particular for key sets with structure. When stronger independence properties are needed for a theoretical analysis, one may resort to classic constructions. Only in 2003 it was found out how full randomness can be simulated using only linear space overhead (which is optimal). The "split-and-share" approach can be used to justify the full randomness assumption in some situations in which full randomness is needed for the analysis to go through, like in many applications involving multiple hash functions (e.g., generalized versions of cuckoo hashing with multiple hash functions or larger bucket sizes, load balancing, Bloom filters and variants, or minimal perfect hash function constructions). For practice, efficiency considerations beyond constant factors are important. It is not hard to construct very efficient 2-wise independent classes. Using k-wise independent classes for constant k bigger than 3 has become feasible in practice only by new constructions involving tabulation. This goes together well with the quite new result that linear probing works with 5-independent hash functions. Recent developments suggest that the classification of hash function constructions by their degree of independence alone may not be adequate in some cases. Thus, one may want to analyze the behavior of specific hash classes in specific applications, circumventing the concept of k-wise independence. Several such results were recently achieved concerning hash functions that utilize tabulation. In particular if the analysis of the application involves using randomness properties in graphs and hypergraphs (generalized cuckoo hashing, also in the version with a "stash", or load balancing), a hash class combining k-wise independence with tabulation has turned out to be very powerful

    Difference of Normals as a Multi-Scale Operator in Unorganized Point Clouds

    Full text link
    A novel multi-scale operator for unorganized 3D point clouds is introduced. The Difference of Normals (DoN) provides a computationally efficient, multi-scale approach to processing large unorganized 3D point clouds. The application of DoN in the multi-scale filtering of two different real-world outdoor urban LIDAR scene datasets is quantitatively and qualitatively demonstrated. In both datasets the DoN operator is shown to segment large 3D point clouds into scale-salient clusters, such as cars, people, and lamp posts towards applications in semi-automatic annotation, and as a pre-processing step in automatic object recognition. The application of the operator to segmentation is evaluated on a large public dataset of outdoor LIDAR scenes with ground truth annotations.Comment: To be published in proceedings of 3DIMPVT 201

    Noise-driven Topological Changes in Chaotic Dynamics

    Full text link
    Noise modifies the behavior of chaotic systems in both quantitative and qualitative ways. To study these modifications, the present work compares the topological structure of the deterministic Lorenz (1963) attractor with its stochastically perturbed version. The deterministic attractor is well known to be "strange" but it is frozen in time. When driven by multiplicative noise, the Lorenz model's random attractor (LORA) evolves in time. Algebraic topology sheds light on the most striking effects involved in such an evolution. In order to examine the topological structure of the snapshots that approximate LORA, we use Branched Manifold Analysis through Homologies (BraMAH) -- a technique originally introduced to characterize the topological structure of deterministically chaotic flows -- which is being extended herein to nonlinear noise-driven systems. The analysis is performed for a fixed realization of the driving noise at different time instants in time. The results suggest that LORA's evolution includes sharp transitions that appear as topological tipping points.Comment: 12 pages and 4 figure

    Random hypergraphs for hashing-based data structures

    Get PDF
    This thesis concerns dictionaries and related data structures that rely on providing several random possibilities for storing each key. Imagine information on a set S of m = |S| keys should be stored in n memory locations, indexed by [n] = {1,…,n}. Each object x [ELEMENT OF] S is assigned a small set e(x) [SUBSET OF OR EQUAL TO] [n] of locations by a random hash function, independent of other objects. Information on x must then be stored in the locations from e(x) only. It is possible that too many objects compete for the same locations, in particular if the load c = m/n is high. Successfully storing all information may then be impossible. For most distributions of e(x), however, success or failure can be predicted very reliably, since the success probability is close to 1 for loads c less than a certain load threshold c^* and close to 0 for loads greater than this load threshold. We mainly consider two types of data structures: • A cuckoo hash table is a dictionary data structure where each key x [ELEMENT OF] S is stored together with an associated value f(x) in one of the memory locations with an index from e(x). The distribution of e(x) is controlled by the hashing scheme. We analyse three known hashing schemes, and determine their exact load thresholds. The schemes are unaligned blocks, double hashing and a scheme for dynamically growing key sets. • A retrieval data structure also stores a value f(x) for each x [ELEMENT OF] S. This time, the values stored in the memory locations from e(x) must satisfy a linear equation that characterises the value f(x). The resulting data structure is extremely compact, but unusual. It cannot answer questions of the form “is y [ELEMENT OF] S?”. Given a key y it returns a value z. If y [ELEMENT OF] S, then z = f(y) is guaranteed, otherwise z may be an arbitrary value. We consider two new hashing schemes, where the elements of e(x) are contained in one or two contiguous blocks. This yields good access times on a word RAM and high cache efficiency. An important question is whether these types of data structures can be constructed in linear time. The success probability of a natural linear time greedy algorithm exhibits, once again, threshold behaviour with respect to the load c. We identify a hashing scheme that leads to a particularly high threshold value in this regard. In the mathematical model, the memory locations [n] correspond to vertices, and the sets e(x) for x [ELEMENT OF] S correspond to hyperedges. Three properties of the resulting hypergraphs turn out to be important: peelability, solvability and orientability. Therefore, large parts of this thesis examine how hyperedge distribution and load affects the probabilities with which these properties hold and derive corresponding thresholds. Translated back into the world of data structures, we achieve low access times, high memory efficiency and low construction times. We complement and support the theoretical results by experiments.Diese Arbeit behandelt Wörterbücher und verwandte Datenstrukturen, die darauf aufbauen, mehrere zufällige Möglichkeiten zur Speicherung jedes Schlüssels vorzusehen. Man stelle sich vor, Information über eine Menge S von m = |S| Schlüsseln soll in n Speicherplätzen abgelegt werden, die durch [n] = {1,…,n} indiziert sind. Jeder Schlüssel x [ELEMENT OF] S bekommt eine kleine Menge e(x) [SUBSET OF OR EQUAL TO] [n] von Speicherplätzen durch eine zufällige Hashfunktion unabhängig von anderen Schlüsseln zugewiesen. Die Information über x darf nun ausschließlich in den Plätzen aus e(x) untergebracht werden. Es kann hierbei passieren, dass zu viele Schlüssel um dieselben Speicherplätze konkurrieren, insbesondere bei hoher Auslastung c = m/n. Eine erfolgreiche Speicherung der Gesamtinformation ist dann eventuell unmöglich. Für die meisten Verteilungen von e(x) lässt sich Erfolg oder Misserfolg allerdings sehr zuverlässig vorhersagen, da für Auslastung c unterhalb eines gewissen Auslastungsschwellwertes c* die Erfolgswahrscheinlichkeit nahezu 1 ist und für c jenseits dieses Auslastungsschwellwertes nahezu 0 ist. Hauptsächlich werden wir zwei Arten von Datenstrukturen betrachten: • Eine Kuckucks-Hashtabelle ist eine Wörterbuchdatenstruktur, bei der jeder Schlüssel x [ELEMENT OF] S zusammen mit einem assoziierten Wert f(x) in einem der Speicherplätze mit Index aus e(x) gespeichert wird. Die Verteilung von e(x) wird hierbei vom Hashing-Schema festgelegt. Wir analysieren drei bekannte Hashing-Schemata und bestimmen erstmals deren exakte Auslastungsschwellwerte im obigen Sinne. Die Schemata sind unausgerichtete Blöcke, Doppel-Hashing sowie ein Schema für dynamisch wachsenden Schlüsselmengen. • Auch eine Retrieval-Datenstruktur speichert einen Wert f(x) für alle x [ELEMENT OF] S. Diesmal sollen die Werte in den Speicherplätzen aus e(x) eine lineare Gleichung erfüllen, die den Wert f(x) charakterisiert. Die entstehende Datenstruktur ist extrem platzsparend, aber ungewöhnlich: Sie ist ungeeignet um Fragen der Form „ist y [ELEMENT OF] S?“ zu beantworten. Bei Anfrage eines Schlüssels y wird ein Ergebnis z zurückgegeben. Falls y [ELEMENT OF] S ist, so ist z = f(y) garantiert, andernfalls darf z ein beliebiger Wert sein. Wir betrachten zwei neue Hashing-Schemata, bei denen die Elemente von e(x) in einem oder in zwei zusammenhängenden Blöcken liegen. So werden gute Zugriffszeiten auf Word-RAMs und eine hohe Cache-Effizienz erzielt. Eine wichtige Frage ist, ob Datenstrukturen obiger Art in Linearzeit konstruiert werden können. Die Erfolgswahrscheinlichkeit eines naheliegenden Greedy-Algorithmus weist abermals ein Schwellwertverhalten in Bezug auf die Auslastung c auf. Wir identifizieren ein Hashing-Schema, das diesbezüglich einen besonders hohen Schwellwert mit sich bringt. In der mathematischen Modellierung werden die Speicherpositionen [n] als Knoten und die Mengen e(x) für x [ELEMENT OF] S als Hyperkanten aufgefasst. Drei Eigenschaften der entstehenden Hypergraphen stellen sich dann als zentral heraus: Schälbarkeit, Lösbarkeit und Orientierbarkeit. Weite Teile dieser Arbeit beschäftigen sich daher mit den Wahrscheinlichkeiten für das Vorliegen dieser Eigenschaften abhängig von Hashing Schema und Auslastung, sowie mit entsprechenden Schwellwerten. Eine Rückübersetzung der Ergebnisse liefert dann Datenstrukturen mit geringen Anfragezeiten, hoher Speichereffizienz und geringen Konstruktionszeiten. Die theoretischen Überlegungen werden dabei durch experimentelle Ergebnisse ergänzt und gestützt
    • …
    corecore