164 research outputs found

    The Effect of Balance Training on Postural Control in Patients with Parkinson s Disease Using a Virtual Rehabilitation System

    Get PDF
    [EN] Objectives: Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by motor clinical alterations among others. Postural problems have serious consequences for patients, not only limiting their daily life but also increasing some risks, like the risk of fall. Inadequate postural control and postural instability is a major problem in PD patients. A Virtual Motor Rehabilitation System (VMR) has been tested in patients with PD in the intervention period. Our pur-pose was to analyze the evolution of the spatial postural control during the intervention period, to see if there are any changes caused precisely by this intervention. Methods: Ten people with PD carried out 15 virtual rehabilitation sessions. We tested a groundbreaking system based on Virtual Motor Rehabilitation in two periods of time (baseline evaluation and final evaluation). In the training sessions, the participants performed a customizable treatment using a low-cost system, the Active Balance Rehabilitation system (ABAR). We stored the pressure performed by the participants every five hundredths of a second, and we analyzed the patients' pressure when they maintained their body on the left, on the right, and in the center in sitting position. Our system was able to measure postural control in every patient in each of the virtual rehabilitation sessions. Results: There are no significant differences in the performance of postural control in any of the positions evaluated throughout the sessions. Moreover, the results show a trend to an improvement in all positions. This improvement is especially remarkable in the left/right positions, which are the most important positions in order to avoid problems such as the risk of fall. With regard to the suitability of the ABAR system, we have found outstanding results in enjoyment, success, clarity, and helpfulness. Conclusions: Although PD is a progressive neurodegenerative disorder, the results demonstrate that patients with PD maintain or even improve their postural control in all positions. We think that the main factor influencing these results is that patients use more of their available cognitive processing to improve their postural control. The ABAR system allows us to make this assumption because the system requires the continuous attention of patients, promoting cognitive processing.This contribution was partially funded by the Gobierno de Aragon, Departamento de Industria e Innovacion, y Fondo Social Europeo "Construyendo Europa desde Aragon" and by the Programa Ibercaja-CAI de Estancias de Investigacion.Albiol-Perez, S.; Gil-Gómez, J.; Muñoz-Tomás, M.; Gil Gómez, H.; Vial Escolano, R.; Lozano Quilis, JA. (2017). The Effect of Balance Training on Postural Control in Patients with Parkinson s Disease Using a Virtual Rehabilitation System. Methods of Information in Medicine. 56(2):138-144. https://doi.org/10.3414/ME16-02-0004S138144562Schwartze, M., & Kotz, S. A. (2016). Regional Interplay for Temporal Processing in Parkinson’s Disease: Possibilities and Challenges. Frontiers in Neurology, 6. doi:10.3389/fneur.2015.00270Nussbaum RL, Ellis CE. Alzheimer’s disease and Parkinson’s disease. N Engl J Med. 2003; 348(14): 1356-1364. Erratum in: N Engl J Med. 2003; 348(25): 2588Pringsheim, T., Jette, N., Frolkis, A., & Steeves, T. D. L. (2014). The prevalence of Parkinson’s disease: A systematic review and meta-analysis. Movement Disorders, 29(13), 1583-1590. doi:10.1002/mds.25945De Lau, L. M., & Breteler, M. M. (2006). Epidemiology of Parkinson’s disease. The Lancet Neurology, 5(6), 525-535. doi:10.1016/s1474-4422(06)70471-9King, L. A., Priest, K. C., Nutt, J., Chen, Y., Chen, Z., Melnick, M., & Horak, F. (2014). Comorbidity and Functional Mobility in Persons with Parkinson Disease. Archives of Physical Medicine and Rehabilitation, 95(11), 2152-2157. doi:10.1016/j.apmr.2014.07.396Von Campenhausen, S., Bornschein, B., Wick, R., Bötzel, K., Sampaio, C., Poewe, W., … Dodel, R. (2005). Prevalence and incidence of Parkinson’s disease in Europe. European Neuropsychopharmacology, 15(4), 473-490. doi:10.1016/j.euroneuro.2005.04.007Muangpaisan, W., Hori, H., & Brayne, C. (2009). Systematic Review of the Prevalence and Incidence of Parkinson’s Disease in Asia. Journal of Epidemiology, 19(6), 281-293. doi:10.2188/jea.je20081034Dorsey, E. R., Constantinescu, R., Thompson, J. P., Biglan, K. M., Holloway, R. G., Kieburtz, K., … Tanner, C. M. (2006). Projected number of people with Parkinson disease in the most populous nations, 2005 through 2030. Neurology, 68(5), 384-386. doi:10.1212/01.wnl.0000247740.47667.03Chaudhuri, K. R., Odin, P., Antonini, A., & Martinez-Martin, P. (2011). Parkinson’s disease: The non-motor issues. Parkinsonism & Related Disorders, 17(10), 717-723. doi:10.1016/j.parkreldis.2011.02.018Jankovic, J. (2008). Parkinson’s disease: clinical features and diagnosis. Journal of Neurology, Neurosurgery & Psychiatry, 79(4), 368-376. doi:10.1136/jnnp.2007.131045Weintraub, D., Moberg, P. J., Duda, J. E., Katz, I. R., & Stern, M. B. (2004). Effect of Psychiatric and Other Nonmotor Symptoms on Disability in Parkinson’s Disease. Journal of the American Geriatrics Society, 52(5), 784-788. doi:10.1111/j.1532-5415.2004.52219.xOndo, W. G., Dat Vuong, K., Khan, H., Atassi, F., Kwak, C., & Jankovic, J. (2001). Daytime sleepiness and other sleep disorders in Parkinson’s disease. Neurology, 57(8), 1392-1396. doi:10.1212/wnl.57.8.1392Shulman, L. M., Taback, R. L., Bean, J., & Weiner, W. J. (2001). Comorbidity of the nonmotor symptoms of Parkinson’s disease. Movement Disorders, 16(3), 507-510. doi:10.1002/mds.1099Nolano, M., Provitera, V., Estraneo, A., Selim, M. M., Caporaso, G., Stancanelli, A., … Santoro, L. (2008). Sensory deficit in Parkinson’s disease: evidence of a cutaneous denervation. Brain, 131(7), 1903-1911. doi:10.1093/brain/awn102Micieli G, Tosi P, Marcheselli S, Cavallini A. Autonomic dysfunction in Parkinson’s disease. Neurol Sci. 2003; 24 Suppl 1: S32-34Salat-Foix, D., & Suchowersky, O. (2012). The management of gastrointestinal symptoms in Parkinson’s disease. Expert Review of Neurotherapeutics, 12(2), 239-248. doi:10.1586/ern.11.192Nombela, C., Bustillo, P. J., Castell, P. F., Sanchez, L., Medina, V., & Herrero, M. T. (2011). Cognitive Rehabilitation in Parkinson’s Disease: Evidence from Neuroimaging. Frontiers in Neurology, 2. doi:10.3389/fneur.2011.00082Poletti, M., De Rosa, A., & Bonuccelli, U. (2012). Affective symptoms and cognitive functions in Parkinson’s disease. Journal of the Neurological Sciences, 317(1-2), 97-102. doi:10.1016/j.jns.2012.02.022Sotgiu, S., Pugliatti, M., Sotgiu, M. A., Fois, M. L., Arru, G., Sanna, A., & Rosati, G. (2005). Seasonal fluctuation of multiple sclerosis births in Sardinia. Journal of Neurology, 253(1), 38-44. doi:10.1007/s00415-005-0917-6FAHN, S. (2006). Description of Parkinson’s Disease as a Clinical Syndrome. Annals of the New York Academy of Sciences, 991(1), 1-14. doi:10.1111/j.1749-6632.2003.tb07458.xCamara, C., Isasi, P., Warwick, K., Ruiz, V., Aziz, T., Stein, J., & Bakštein, E. (2015). Resting tremor classification and detection in Parkinson’s disease patients. Biomedical Signal Processing and Control, 16, 88-97. doi:10.1016/j.bspc.2014.09.006Deuschl, G., Bain, P., & Brin, M. (2008). Consensus Statement of the Movement Disorder Society on Tremor. Movement Disorders, 13(S3), 2-23. doi:10.1002/mds.870131303Massano, J., & Bhatia, K. P. (2012). Clinical Approach to Parkinson’s Disease: Features, Diagnosis, and Principles of Management. Cold Spring Harbor Perspectives in Medicine, 2(6), a008870-a008870. doi:10.1101/cshperspect.a008870Salarian, A., Russmann, H., Wider, C., Burkhard, P. R., Vingerhoets, F. J. G., & Aminian, K. (2007). Quantification of Tremor and Bradykinesia in Parkinson’s Disease Using a Novel Ambulatory Monitoring System. IEEE Transactions on Biomedical Engineering, 54(2), 313-322. doi:10.1109/tbme.2006.886670Dai, H., Zhang, P., & Lueth, T. (2015). Quantitative Assessment of Parkinsonian Tremor Based on an Inertial Measurement Unit. Sensors, 15(10), 25055-25071. doi:10.3390/s151025055Findley, L. J., Gresty, M. A., & Halmagyi, G. M. (1981). Tremor, the cogwheel phenomenon and clonus in Parkinson’s disease. Journal of Neurology, Neurosurgery & Psychiatry, 44(6), 534-546. doi:10.1136/jnnp.44.6.534Berardelli, A. (2001). Pathophysiology of bradykinesia in Parkinson’s disease. Brain, 124(11), 2131-2146. doi:10.1093/brain/124.11.2131Bronnick, K. (2006). Attentional deficits affect activities of daily living in dementia-associated with Parkinson’s disease. Journal of Neurology, Neurosurgery & Psychiatry, 77(10), 1136-1142. doi:10.1136/jnnp.2006.093146Horak FB. Postural orientation and equilibrium: what do we need to know about neural control of balance to prevent falls? Age Ageing. 2006; 35 Suppl 2: ii7-ii11Movement Disorder Society Task Force on Rating Scales for Parkinson’s Disease. The Unified Parkinson’s Disease Rating Scale (UPDRS): status and recommendations. Mov Disord. 2003; 18(7): 738-750. Available from: http://img.medscape.com/fullsize/701/816/58977_UPDRS.pdfGoetz, C. G., Tilley, B. C., Shaftman, S. R., Stebbins, G. T., Fahn, S., Martinez-Martin, P., … LaPelle, N. (2008). Movement Disorder Society-sponsored revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS): Scale presentation and clinimetric testing results. Movement Disorders, 23(15), 2129-2170. doi:10.1002/mds.22340Dibble, L. E., Hale, T. F., Marcus, R. L., Gerber, J. P., & LaStayo, P. C. (2009). High intensity eccentric resistance training decreases bradykinesia and improves quality of life in persons with Parkinson’s disease: A preliminary study. Parkinsonism & Related Disorders, 15(10), 752-757. doi:10.1016/j.parkreldis.2009.04.009Dibble, L. E., Hale, T. F., Marcus, R. L., Droge, J., Gerber, J. P., & LaStayo, P. C. (2006). High-intensity resistance training amplifies muscle hypertrophy and functional gains in persons with Parkinson’s disease. Movement Disorders, 21(9), 1444-1452. doi:10.1002/mds.20997McIntosh, G. C., Brown, S. H., Rice, R. R., & Thaut, M. H. (1997). Rhythmic auditory-motor facilitation of gait patterns in patients with Parkinson’s disease. Journal of Neurology, Neurosurgery & Psychiatry, 62(1), 22-26. doi:10.1136/jnnp.62.1.22Deane KH, Jones D, Playford ED, Ben-Shlomo Y, Clarke CE. Physiotherapy for patients with Parkinson’s Disease: a comparison of techniques. Cochrane Database Syst Rev. 2001; (3): CD002817Albiol-Pérez S, Lozano-Quilis JA, Gil-Gómez H, Gil-Gómez JA, Llorens R. Virtual rehabilitation system for people with Parkinson disease. 9th Intl Conf. Disability, Virtual Reality & Associated Technologies, Laval, France; 2012Mendes, F. A. dos S., Pompeu, J. E., Lobo, A. M., da Silva, K. G., Oliveira, T. de P., Zomignani, A. P., & Piemonte, M. E. P. (2012). Motor learning, retention and transfer after virtual-reality-based training in Parkinson’s disease – effect of motor and cognitive demands of games: a longitudinal, controlled clinical study. Physiotherapy, 98(3), 217-223. doi:10.1016/j.physio.2012.06.001Saposnik, G., & Levin, M. (2011). Virtual Reality in Stroke Rehabilitation. Stroke, 42(5), 1380-1386. doi:10.1161/strokeaha.110.605451Lozano-Quilis, J.-A., Gil-Gómez, H., Gil-Gómez, J.-A., Albiol-Pérez, S., Palacios-Navarro, G., Fardoun, H. M., & Mashat, A. S. (2014). Virtual Rehabilitation for Multiple Sclerosis Using a Kinect-Based System: Randomized Controlled Trial. JMIR Serious Games, 2(2), e12. doi:10.2196/games.2933Badarny, S., Aharon-Peretz, J., Susel, Z., Habib, G., & Baram, Y. (2014). Virtual Reality Feedback Cues for Improvement of Gait in Patients with Parkinson’s Disease. Tremor and Other Hyperkinetic Movements, 4(0), 225. doi:10.5334/tohm.192Ehgoetz Martens, K. A., Ellard, C. G., & Almeida, Q. J. (2014). Does manipulating the speed of visual flow in virtual reality change distance estimation while walking in Parkinson’s disease? Experimental Brain Research, 233(3), 787-795. doi:10.1007/s00221-014-4154-zAlbiol-Perez, S., Gil-Gomez, J.-A., Llorens, R., Alcaniz, M., & Font, C. C. (2014). The Role of Virtual Motor Rehabilitation: A Quantitative Analysis Between Acute and Chronic Patients With Acquired Brain Injury. IEEE Journal of Biomedical and Health Informatics, 18(1), 391-398. doi:10.1109/jbhi.2013.2272101Forcano-García, M., Muñoz-Tomás, M. T., Manzano-Fernández, P., Solsona-Hernández, S., Mashat, M. A., Gil-Gómez, J. A., & Albiol-Pérez, S. (2015). A Novel Virtual Motor Rehabilitation System for Guillain-Barré Syndrome. Methods of Information in Medicine, 54(02), 127-134. doi:10.3414/me14-02-0002Gil-Gómez, J.-A., Lloréns, R., Alcañiz, M., & Colomer, C. (2011). Effectiveness of a Wii balance board-based system (eBaViR) for balance rehabilitation: a pilot randomized clinical trial in patients with acquired brain injury. Journal of NeuroEngineering and Rehabilitation, 8(1), 30. doi:10.1186/1743-0003-8-30Muñoz Tomás, M. T., Gil Gómez, J. A., Gil Gómez, H., Lozano Quillis, J. A., Albiol-Pérez, S., & Forcano García, M. (2013). Suitability of virtual rehabilitation for elderly: A study of a virtual rehabilitation system using the SEQ. European Geriatric Medicine, 4, S109. doi:10.1016/j.eurger.2013.07.358Pompeu, J. E., Mendes, F. A. dos S., Silva, K. G. da, Lobo, A. M., Oliveira, T. de P., Zomignani, A. P., & Piemonte, M. E. P. (2012). Effect of Nintendo Wii™-based motor and cognitive training on activities of daily living in patients with Parkinson’s disease: A randomised clinical trial. Physiotherapy, 98(3), 196-204. doi:10.1016/j.physio.2012.06.004Pompeu, J. E., Arduini, L. A., Botelho, A. R., Fonseca, M. B. F., Pompeu, S. M. A. A., Torriani-Pasin, C., & Deutsch, J. E. (2014). Feasibility, safety and outcomes of playing Kinect Adventures!™ for people with Parkinson’s disease: a pilot study. Physiotherapy, 100(2), 162-168. doi:10.1016/j.physio.2013.10.003Summa, S., Basteris, A., Betti, E., & Sanguineti, V. (2013). A feasibility study on using kinect™ for the rehabilitation in persons with Parkinson’s disease. Gait & Posture, 37, S15. doi:10.1016/j.gaitpost.2012.12.040Herz, N. B., Mehta, S. H., Sethi, K. D., Jackson, P., Hall, P., & Morgan, J. C. (2013). Nintendo Wii rehabilitation («Wii-hab») provides benefits in Parkinson’s disease. Parkinsonism & Related Disorders, 19(11), 1039-1042. doi:10.1016/j.parkreldis.2013.07.014Holmes, J. D., Jenkins, M. E., Johnson, A. M., Hunt, M. A., & Clark, R. A. (2012). Validity of the Nintendo Wii® balance board for the assessment of standing balance in Parkinson’s disease. Clinical Rehabilitation, 27(4), 361-366. doi:10.1177/0269215512458684Mhatre, P. V., Vilares, I., Stibb, S. M., Albert, M. V., Pickering, L., Marciniak, C. M., … Toledo, S. (2013). Wii Fit Balance Board Playing Improves Balance and Gait in Parkinson Disease. PM&R, 5(9), 769-777. doi:10.1016/j.pmrj.2013.05.019Plotnik, M., Roggen, D., Giladi, N., Hausdorff, J. M., Tröster, G., & Bächlin, M. (2010). A Wearable System to Assist Walking of Parkinson´s Disease Patients. Methods of Information in Medicine, 49(01), 88-95. doi:10.3414/me09-02-0003Rigas, G., Tzallas, A. T., Tsipouras, M. G., Bougia, P., Tripoliti, E. E., Baga, D., … Konitsiotis, S. (2012). Assessment of Tremor Activity in the Parkinson’s Disease Using a Set of Wearable Sensors. IEEE Transactions on Information Technology in Biomedicine, 16(3), 478-487. doi:10.1109/titb.2011.2182616Duval, C. (2006). Rest and postural tremors in patients with Parkinson’s disease. Brain Research Bulletin, 70(1), 44-48. doi:10.1016/j.brainresbull.2005.11.010The World Medical Association Ethics Unit. Declaration of Helsinki. Available from: http://www.wma.net/en/30publications/10policies/b3/Folstein, M. F., Folstein, S. E., & McHugh, P. R. (1975). «Mini-mental state». Journal of Psychiatric Research, 12(3), 189-198. doi:10.1016/0022-3956(75)90026-6Collin, C., Wade, D. T., Davies, S., & Horne, V. (1988). The Barthel ADL Index: A reliability study. International Disability Studies, 10(2), 61-63. doi:10.3109/09638288809164103Lawton, M. P. (1975). The Philadelphia Geriatric Center Morale Scale: A Revision. Journal of Gerontology, 30(1), 85-89. doi:10.1093/geronj/30.1.85Charlson, M. E., Pompei, P., Ales, K. L., & MacKenzie, C. R. (1987). A new method of classifying prognostic comorbidity in longitudinal studies: Development and validation. Journal of Chronic Diseases, 40(5), 373-383. doi:10.1016/0021-9681(87)90171-8Gil-Gómez JA, Manzano-Hernández P, Albiol-Pérez S, Aula-Valero C, Gil-Gómez H, Lozano-Quilis JA. SEQ: suitability evaluation questionnaire for virtual rehabilitation systems. Application in a virtual rehabilitation system for balance rehabilitation. Proceedings of the 7th International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth ’13); 2013. p. 335-338Kizony R, Katz N, Rand D, Weiss PL. A Short Feedback Questionnaire (SFQ) to enhance client-centered participation in virtual environments. 11th Annual Cyber Therapy Conference: Virtual Healing: Designing Reality, Gatineau, Canada; 2006Shapiro SS, Wilk MB. An analysis of variance test for normality (complete samples). Biometrika; 1965; 52(3-4): 591-611Horak, F. B. (2006). Postural orientation and equilibrium: what do we need to know about neural control of balance to prevent falls? Age and Ageing, 35(suppl_2), ii7-ii11. doi:10.1093/ageing/afl077Kim, S. D., Allen, N. E., Canning, C. G., & Fung, V. S. C. (2012). Postural Instability in Patients with Parkinson’s Disease. CNS Drugs, 27(2), 97-112. doi:10.1007/s40263-012-0012-3Robbins, T. W., & Cools, R. (2014). Cognitive deficits in Parkinson’s disease: A cognitive neuroscience perspective. Movement Disorders, 29(5), 597-607. doi:10.1002/mds.25853De Rijk, M. C., Tzourio, C., Breteler, M. M., Dartigues, J. F., Amaducci, L., Lopez-Pousa, S., … Rocca, W. A. (1997). Prevalence of parkinsonism and Parkinson’s disease in Europe: the EUROPARKINSON Collaborative Study. European Community Concerted Action on the Epidemiology of Parkinson’s disease. Journal of Neurology, Neurosurgery & Psychiatry, 62(1), 10-15. doi:10.1136/jnnp.62.1.1

    Automating senior fitness testing through gesture detection with depth sensors

    Get PDF
    Sedentarism has a negative impact on health, life expectancy and quality of life, especially in older adults. The assessment of functional fitness helps evaluating the effects of ageing and sedentarism, and this assessment is typically done through validated battery tests such as the Senior Fitness Test (SFT). In this paper we present a computer-based system for assisting and automating SFT administration and scoring in the elderly population. Our system assesses lower body strength, agility and dynamic balance, and aerobic endurance making use of a depth sensor for body tracking and multiple gesture detectors for the evaluation of movement execution. The system was developed and trained with optimal data collected in laboratory conditions and its performance was evaluated in a real environment with 22 elderly end-users, and compared to traditional SFT administered by an expert. Results show a high accuracy of our system in identifying movement patterns (>95%) and consistency with the traditional fitness assessment method. Our results suggest that this technology is a viable low cost option to assist in the fitness assessment of elderly that could be deployed for at home use in the context of fitness programs.info:eu-repo/semantics/publishedVersio
    • …
    corecore