949 research outputs found

    A novel haptic model and environment for maxillofacial surgical operation planning and manipulation

    Get PDF
    This paper presents a practical method and a new haptic model to support manipulations of bones and their segments during the planning of a surgical operation in a virtual environment using a haptic interface. To perform an effective dental surgery it is important to have all the operation related information of the patient available beforehand in order to plan the operation and avoid any complications. A haptic interface with a virtual and accurate patient model to support the planning of bone cuts is therefore critical, useful and necessary for the surgeons. The system proposed uses DICOM images taken from a digital tomography scanner and creates a mesh model of the filtered skull, from which the jaw bone can be isolated for further use. A novel solution for cutting the bones has been developed and it uses the haptic tool to determine and define the bone-cutting plane in the bone, and this new approach creates three new meshes of the original model. Using this approach the computational power is optimized and a real time feedback can be achieved during all bone manipulations. During the movement of the mesh cutting, a novel friction profile is predefined in the haptical system to simulate the force feedback feel of different densities in the bone

    The Value of Grid-Scale Variable Renewable Energy Generation in Sub-Saharan Africa

    Get PDF
    This report was produced for the Green Growth Diagnostics for Africa project, funded by the Engineering and Physical Sciences Research Council.Securing a sufficient supply of reliable and affordable electricity is a huge challenge for countries in sub-Saharan Africa. Many countries in the region are experiencing rapid increases in the size of their populations, and even more rapid growth in their economies. As a result, the region experienced a 45 per cent increase in annual energy consumption between the years 2000-2014, with the growth in some countries much higher. This article surveys the most relevant research, policies and sources of data relevant to generation adequacy assessment in two example SSA countries: Kenya and Ghana. It also includes an exploratory analysis of the temporal relationships between the hydro resource, wind resource and power demand in Kenya, with an emphasis on assessing the impact of limited data availability

    CO2 savings from Micro-CHP : influence of operating regimes, demand variations and energy storage

    Get PDF
    A high temporal precision model was developed to assess the performance of thermal load following micro-CHP system design variants in detail for a number of design days. Carbon savings (relative to a base-case energy system) and prime mover lifetime drivers (thermal cycling and operating duration) were quantified. Novel performance metrics were defined, including Potential Thermal Supply Demand Ratio, and Effective Carbon Intensity of μCHP-Generated Electricity. Significant relative carbon savings were found for design variants with a PTSDR between 0.1-1.5, suggesting that it is a design selection parameter for thermal supply/demand matching. Alternative μCHP operating regimes, restricted seasonal operation, changing thermal demand, fuel and electricity grid carbon intensities, and energy storage (using batteries and hydrogen) were studied. It was found that annual relative carbon savings in excess of 23% were achievable for appropriately-sized design variants, with relatively high electrical efficiency, once a complex control strategy is applied. The control strategy also reduces thermal cycling for the μCHP design variant (versus the Thermal Load Following operating regime), hence increasing prime mover lifetime.Engineering and Physical Sciences Research Council (EPSRC

    Energy Efficient Building's Envelopes. Numerical and experimental analysis of innovative solutions

    Get PDF
    The aim of this study is to set up a simplified and validated numerical platform to describe several technologies concerning the energy performance improvements of glazed and opaque building envelopes. The study included the validation of DIGITHON, a detailed simulation software and the development of a simplified transient numerical model in respect of glazed buildings. DIGITHON, was validated against experimental data, and then a parametric study was carried out through it to evaluate the air pre-heat efficiency of implementing the façade as an energy recovery unit. The simplified model was dedicated to the thermal engineering designers dealing with projects preliminary phases .The simplified model was validated against experimental data. Later an extensive comparison between the detailed software DIGITHON and the simplified model was carried out for different climatic conditions to evaluate the influence of considering indoor zones thermal inertia. Although the simplified model estimates thermal loads higher than DIGITHON, nevertheless this can be considered a beneficial design safety aspect as long as it is implemented in the preliminary design phases. Later an innovative locating of photovoltaic modules at building glazed facades was investigated through the commercial software TRNSYS. The methodology of modelling double skin-glazed façades combined with different strategies of ventilation applying TRNflow software was thoroughly clarified. The results show a reduction in thermal heating loads compared to conventional location of PV on external building surfaces. On the other hand the cooling loads are increased, hence to improve the performance of the system in summer hot season, the technology of phase changing material (PCM) was tackled in the research as a latent thermal storage system. A numerical investigation of the effect of PCM in building sector, solely and combined with PV modules to improve its thermal performance, has been carried out. Two numerical models (equivalent capacitance and enthalpy linearization methods) describing the PCM thermal and optical performance have been developed and validated. Results show that thermal loads reductions of a system implementing PV/PCM modules reach 30% in summer season. Afterwards, the research through experimental campaign and numerical heat transfer modelling optimised the selection and location of two technologies within a residential roof attic: the technologies considered were PCM modules and reflective surfaces; five transient numerical models have been developed and validated. The results clarify the influence of the proper selection for melting-solidification PCM range suiting each application in order to reach optimum specific heat capacity values which could improve the overall thermal balance of the inner zone. Finally, computational fluid dynamics CFD models have been applied to different case studies to describe the thermal performance of vertical glazed envelopes

    Mining Technologies Innovative Development

    Get PDF
    The present book covers the main challenges, important for future prospects of subsoils extraction as a public effective and profitable business, as well as technologically advanced industry. In the near future, the mining industry must overcome the problems of structural changes in raw materials demand and raise the productivity up to the level of high-tech industries to maintain the profits. This means the formation of a comprehensive and integral response to such challenges as the need for innovative modernization of mining equipment and an increase in its reliability, the widespread introduction of Industry 4.0 technologies in the activities of mining enterprises, the transition to "green mining" and the improvement of labor safety and avoidance of man-made accidents. The answer to these challenges is impossible without involving a wide range of scientific community in the publication of research results and exchange of views and ideas. To solve the problem, this book combines the works of researchers from the world's leading centers of mining science on the development of mining machines and mechanical systems, surface and underground geotechnology, mineral processing, digital systems in mining, mine ventilation and labor protection, and geo-ecology. A special place among them is given to post-mining technologies research

    STUDY OF STRATEGIES FOR AN OPTIMAL ENERGY MANAGEMENT ON ELECTRIC AND HYBRID VEHICLES

    Get PDF
    Questa tesi di dottorato è focalizzata sull’identificazione di strategie di gestione dell’energia a bordo di veicoli elettrici e ibridi, con l’obiettivo di ottimizzare la gestione dell’energia e, quindi, consentire un risparmio di risorse. Infatti, l’ottimizzazione della fase d’uso del veicolo, attraverso una più efficiente gestione dell’energia, consente di dimensionare in modo ridotto i principali componenti, come il pacco batterie. Innanzitutto, viene presentato un tool di simulazione denominato TEST (Target-speed EV Simulation Tool). Questo strumento consente di effettuare simulazioni di dinamica longitudinale per veicoli completamente elettrici o ibridi e, quindi, di monitorare tutti i dati rilevanti necessari per effettuare un corretto dimensionamento del gruppo propulsore, inclusi il/i motore/i elettrico/i ed il pacco batterie. Inoltre, è possibile testare anche diversi layout di propulsori, compresi quelli che utilizzano celle a combustibile, le cosiddette “fuel cell”. Viene poi presentata una strategia di frenata rigenerativa, adatta per veicoli FWD, RWD e AWD. L’obiettivo principale è quello di recuperare la massima energia frenante possibile, mantenendo il veicolo stabile, con buone prestazioni in frenata. La strategia è stata testata sia attraverso un consolidato software di simulazione della dinamica del veicolo (VI-CarRealTime), sia attraverso simulazioni “driver-in-the-loop” utilizzando un simulatore di guida. Inoltre, la strategia proposta è stata integrata nel tool TEST per valutarne l’influenza sull’autonomia e sui consumi del veicolo. Gli strumenti sopra menzionati sono stati utilizzati per studiare uno scenario di casi reali, per valutare la fattibilità dell’utilizzo di una flotta alimentata a fuel cell a metano per svolgere attività di raccolta rifiuti porta a porta. I risultati mostrano un’elevata fattibilità in termini di autonomia del veicolo rispetto alle missioni standard di raccolta dei rifiuti, a condizione che i componenti siano adeguatamente dimensionati. Il dimensionamento dei componenti è stato effettuato attraverso iterazioni, utilizzando diversi componenti nelle stesse missioni. Infine, è stata riportata un’analisi approfondita degli studi LCA (Life Cycle Assessment) relativi ai veicoli elettrici, con particolare attenzione al pacco batterie, evidenziando alcune criticità ambientali. Questo studio sull’LCA sottolinea quindi l’importanza di una corretta gestione dell’energia per ridurre al minimo l’impatto ambientale associato al consumo stesso di energia.This PhD thesis is focused on identifying energy management strategies on board electric and hybrid vehicles, to optimize energy management and thus allow for resource savings. In fact, vehicle’s operational phase optimisation through a more efficient energy management allows main components downsizing, such as battery pack. First of all, a simulation tool called TEST (Target-speed EV Simulation Tool), is presented. This tool allows to carry out longitudinal dynamics simulations on pure electric or hybrid-electric vehicles, and therefore monitoring all the relevant data needed to carry out a proper powertrain sizing, including the electric motor(s) and the battery pack. Furthermore, several powertrain layouts can be also tested, including those using fuel cells. Then a regenerative braking strategy, suitable for FWD, RWD and AWD vehicles, is presented. Its main target is to recover the maximum possible braking energy, while keeping the vehicle stable with good braking performance. The strategy has been tested both through a state-of-art vehicle dynamics simulation software (VI-CarRealTime) and through driver-in-the-loop simulations using a driving simulator. Furthermore, the proposed strategy has been integrated into TEST to evaluate its influence on vehicle range and consumptions. The above-mentioned tools have been used to evaluate a real-world case scenario to assess the feasibility of using a methane fuel cell powered fleet to carry out door to door waste collection activities. Results show high feasibility in terms of vehicle range compared to standard waste collection missions, provided that components are properly sized. Components sizing has been done through iterations using different components on the same missions. Finally, an in-depth analysis of the LCA (Life Cycle Assessment) studies related to electric vehicles has been reported, with particular focus to the battery pack, highlighting some environmental critical issues. This LCA study therefore emphasizes the importance of a correct energy management to minimize the environmental impact associated with energy consumption

    Advances in simulated moving bed : new operating modes : new design methodologies and product (FlexSMB-LSRE) development

    Get PDF
    Tese de doutoramento. Engenharia Química e Biológica. Faculdade de Engenharia. Universidade do Porto. 200

    Integration of electronic systems on wearable textile antenna platforms

    Get PDF

    A toolbox for multi-objective optimisation of low carbon powertrain topologies

    Get PDF
    Stricter regulations and evolving environmental concerns have been exerting ever-increasing pressure on the automotive industry to produce low carbon vehicles that reduce emissions. As a result, increasing numbers of alternative powertrain architectures have been released into the marketplace to address this need. However, with a myriad of possible alternative powertrain configurations, which is the most appropriate type for a given vehicle class and duty cycle? To that end, comparative analyses of powertrain configurations have been widely carried out in literature; though such analyses only considered limited types of powertrain architectures at a time. Collating the results from these literature often produced findings that were discontinuous, which made it difficult for drawing conclusions when comparing multiple types of powertrains. The aim of this research is to propose a novel methodology that can be used by practitioners to improve the methods for comparative analyses of different types of powertrain architectures. Contrary to what has been done so far, the proposed methodology combines an optimisation algorithm with a Modular Powertrain Structure that facilitates the simultaneous approach to optimising multiple types of powertrain architectures. The contribution to science is two-folds; presenting a methodology to simultaneously select a powertrain architecture and optimise its component sizes for a given cost function, and demonstrating the use of multi-objective optimisation for identifying trade-offs between cost functions by powertrain architecture selection. Based on the results, the sizing of the powertrain components were influenced by the power and energy requirements of the drivecycle, whereas the powertrain architecture selection was mainly driven by the autonomy range requirements, vehicle mass constraints, CO2 emissions, and powertrain costs. For multi-objective optimisation, the creation of a 3-dimentional Pareto front showed multiple solution points for the different powertrain architectures, which was inherent from the ability of the methodology to concurrently evaluate those architectures. A diverging trend was observed on this front with the increase in the autonomy range, driven primarily by variation in powertrain cost per kilometre. Additionally, there appeared to be a trade-off in terms of electric powertrain sizing between CO2 emissions and lowest mass. This was more evident at lower autonomy ranges, where the battery efficiency was a deciding factor for CO2 emissions. The results have demonstrated the contribution of the proposed methodology in the area of multi-objective powertrain architecture optimisation, thus addressing the aims of this research
    corecore