465 research outputs found

    Forest Understory Trees Can Be Segmented Accurately Within Sufficiently Dense Airborne Laser Scanning Point Clouds

    Get PDF
    Airborne laser scanning (LiDAR) point clouds over large forested areas can be processed to segment individual trees and subsequently extract tree-level information. Existing segmentation procedures typically detect more than 90% of overstory trees, yet they barely detect 60% of understory trees because of the occlusion effect of higher canopy layers. Although understory trees provide limited financial value, they are an essential component of ecosystem functioning by offering habitat for numerous wildlife species and influencing stand development. Here we model the occlusion effect in terms of point density. We estimate the fractions of points representing different canopy layers (one overstory and multiple understory) and also pinpoint the required density for reasonable tree segmentation (where accuracy plateaus). We show that at a density of ~170 pt/m² understory trees can likely be segmented as accurately as overstory trees. Given the advancements of LiDAR sensor technology, point clouds will affordably reach this required density. Using modern computational approaches for big data, the denser point clouds can efficiently be processed to ultimately allow accurate remote quantification of forest resources. The methodology can also be adopted for other similar remote sensing or advanced imaging applications such as geological subsurface modelling or biomedical tissue analysis

    Innovative surveying methodologies through Handheld Terrestrial LIDAR Scanner technologies for forest resource assessment

    Get PDF
    Precision Forestry is an innovative sector that is currently of great importance for forest and spatial planning. It enables complex analyses of forest data to be carried out in a simple and economical way and facilitates collaboration between technicians, industry operators and stakeholders, thus ensuring transparency in forestry interventions (Corona et al., 2017). The principles of "Precision Forestry" are to use modern tools and technologies with the aim to obtain as much real information as possible, to improve decision-making, and to ensure the current objectives of forest management. Thanks to the rapid technological developments in remote sensing during the last few decades, there have been remarkable improvements in measurement accuracy, and consequentially improvements in the quality of technical elaborations supporting planning decisions. During this period, several scientific publications have demonstrated the potential of the LIDAR system for measuring and mapping forests, geology, and topography in large-scale forest areas. The LIDAR scans obtained from the TLS and HLS systems provide detailed information about the internal characteristics of tree canopys, making them an essential tool for studying stem allometry, volume, light environments, photosynthesis, and production models. In light of these considerations, this thesis aims to expand the current knowledge on the terrestrial LIDAR system applications for monitoring forest ecosystems and dynamics by providing insight on the feasibility and effectiveness of these systems for forest planning. In particular, this study fills a gap in the literature regarding practical examples of the use of innovative technologies in forestry. The main themes of this work are: A) The strengths and weaknesses of the mobile LIDAR system for a forest company; B) The applicability and versatility of the LIDAR HLS tool for sustainable forest management applications; C) Single tree analysis from HLS LIDAR data.   To investigate these themes, we analyzed six cases studies: 1) An investigation of the feasibility and efficiency of LIDAR HLS scanning for an accurate estimation of forest structural attributes by comparing scans using the LIDAR HLS survey method (Handheld Mobile Laser Scanner) to traditional instruments; 2) An examination of walking scan path density’s influence on single-tree attribute estimation by HMLS, taking into account the structural biodiversity of two forest ecosystems under examination, and an estimation of the cost-effectiveness of each type of laser survey based on the path scheme considered; 3) A study of how LIDAR HLS surveys can contribute to fire prevention interventions by providing a quantitative classification of fuels and a preliminary description of the structural and spatial development of the forest in question; 4) An application of a method for assessing and rating stem straightness in tree posture using LIDAR HLS surveys to quantify differences between stands of different log qualities; 5) The identification of features of a Mediterranean old-growth forest using LIDAR HLS surveys according to the criteria established in the literature; 6) The extrapolation of dimensional information for Ficus macrophylla subsp. columnaris to identify the monumental character of the tree by comparing the most appropriate LIDAR HLS point cloud processing methodologies and estimating the total volume of individual trees. In conclusion, the results of these cases studies are useful to determine new research aspects within the system in the forest environment by applying recently published analysis methodologies and indications of relevant terrestrial LIDAR methodologies

    Forest Understory Trees Can Be Segmented Accurately Within Sufficiently Dense Airborne Laser Scanning Point Clouds

    Get PDF
    Airborne laser scanning (LiDAR) point clouds over large forested areas can be processed to segment individual trees and subsequently extract tree-level information. Existing segmentation procedures typically detect more than 90% of overstory trees, yet they barely detect 60% of understory trees because of the occlusion effect of higher canopy layers. Although understory trees provide limited financial value, they are an essential component of ecosystem functioning by offering habitat for numerous wildlife species and influencing stand development. Here we model the occlusion effect in terms of point density. We estimate the fractions of points representing different canopy layers (one overstory and multiple understory) and also pinpoint the required density for reasonable tree segmentation (where accuracy plateaus). We show that at a density of ~170 pt/m² understory trees can likely be segmented as accurately as overstory trees. Given the advancements of LiDAR sensor technology, point clouds will affordably reach this required density. Using modern computational approaches for big data, the denser point clouds can efficiently be processed to ultimately allow accurate remote quantification of forest resources. The methodology can also be adopted for other similar remote sensing or advanced imaging applications such as geological subsurface modelling or biomedical tissue analysis

    Exploring the variability of tropical savanna tree structural allometry with terrestrial laser scanning

    Get PDF
    Individual tree carbon stock estimates typically rely on allometric scaling relationships established between field-measured stem diameter (DBH) and destructively harvested biomass. The use of DBH-based allometric equations to estimate the carbon stored over larger areas therefore, assumes that tree architecture, including branching and crown structures, are consistent for a given DBH, and that minor variations cancel out at the plot scale. We aimed to explore the degree of structural variation present at the individual tree level across a range of size-classes. We used terrestrial laser scanning (TLS) to measure the 3D structure of each tree in a 1 ha savanna plot, with coincident field-inventory. We found that stem reconstructions from TLS captured both the spatial distribution pattern and the DBH of individual trees with high confidence when compared with manual measurements (R2 = 0.98, RMSE = 0.0102 m). Our exploration of the relationship between DBH, crown size and tree height revealed significant variability in savanna tree crown structure (measured as crown area). These findings question the reliability of DBH-based allometric equations for adequately representing diversity in tree architecture, and therefore carbon storage, in tropical savannas. However, adoption of TLS outside environmental research has been slow due to considerable capital cost and monitoring programs often continue to rely on sub-plot monitoring and traditional allometric equations. A central aspect of our study explores the utility of a lower-cost TLS system not generally used for vegetation surveys. We discuss the potential benefits of alternative TLS-based approaches, such as explicit modelling of tree structure or voxel-based analyses, to capture the diverse 3D structures of savanna trees. Our research highlights structural heterogeneity as a source of uncertainty in savanna tree carbon estimates and demonstrates the potential for greater inclusion of cost-effective TLS technology in national monitoring programs
    • …
    corecore