164 research outputs found

    MAC/PHY Co-Design of CSMA Wireless Networks Using Software Radios.

    Full text link
    In the past decade, CSMA-based protocols have spawned numerous network standards (e.g., the WiFi family), and played a key role in improving the ubiquity of wireless networks. However, the rapid evolution of CSMA brings unprecedented challenges, especially the coexistence of different network architectures and communications devices. Meanwhile, many intrinsic limitations of CSMA have been the main obstacle to the performance of its derivatives, such as ZigBee, WiFi, and mesh networks. Most of these problems are observed to root in the abstract interface of the CSMA MAC and PHY layers --- the MAC simply abstracts the advancement of PHY technologies as a change of data rate. Hence, the benefits of new PHY technologies are either not fully exploited, or they even may harm the performance of existing network protocols due to poor interoperability. In this dissertation, we show that a joint design of the MAC/PHY layers can achieve a substantially higher level of capacity, interoperability and energy efficiency than the weakly coupled MAC/PHY design in the current CSMA wireless networks. In the proposed MAC/PHY co-design, the PHY layer exposes more states and capabilities to the MAC, and the MAC performs intelligent adaptation to and control over the PHY layer. We leverage the reconfigurability of software radios to design smart signal processing algorithms that meet the challenge of making PHY capabilities usable by the MAC layer. With the approach of MAC/PHY co-design, we have revisited the primitive operations of CSMA (collision avoidance, carrier signaling, carrier sensing, spectrum access and transmitter cooperation), and overcome its limitations in relay and broadcast applications, coexistence of heterogeneous networks, energy efficiency, coexistence of different spectrum widths, and scalability for MIMO networks. We have validated the feasibility and performance of our design using extensive analysis, simulation and testbed implementation.PHDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/95944/1/xyzhang_1.pd

    Protocols for multi-antenna ad-hoc wireless networking in interference environments

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2010.Cataloged from PDF version of thesis.Includes bibliographical references (p. 231-242).A fundamental question for the design of future wireless networks concerns the nature of spectrum management and the protocols that govern use of the spectrum. In the oligopoly model, spectrum is owned and centrally managed, and the protocols tend to reflect this centralized nature. In the common's model, spectrum is a public good, and protocols must support ad hoc communication. This work presents the design, tradeoffs and parameter optimization for a new protocol (Simultaneous Transmissions in Interference (STI-MAC)) for ad hoc wireless networks. The key idea behind the STI-MAC protocol is 'channel stuffing,' that is, allowing network nodes to more efficiently use spatial, time and frequency degrees of freedom. This is achieved in three key ways. First, 'channel stuffing' is achieved through multiple antennas that are used at the receiver to mitigate interference using Minimum-Mean-Squared-Error (MMSE) receivers, allowing network nodes to transmit simultaneously in interference limited environments. The protocol also supports the use of multiple transmit antennas to beamform to the target receiver. Secondly, 'channel stuffing' is achieved through the use of a control channel that is orthogonal in time to the data channel, where nodes contend in order to participate on the data channel. And thirdly, 'channel stuffing' is achieved through a protest scheme that prevents data channel overloading. The STI-MAC protocol is analyzed via Monte-Carlo simulations in which transmitter nodes are uniformly distributed in a plane, each at a fixed distance from their target receiver; and as a function of network parameters including the number of transmit and receive antennas, the distance between a transmitter-receiver pair (link-length), the average number of transmitters whose received signal is stronger at a given receiver than its target transmitter (link-rank), number of transmitter-receiver pairs, the distribution on the requested rate, the offered load, and the transmit scheme. The STI-MAC protocol is benchmarked relative to simulations of the 802.11(n) (Wi-Fi) protocol. The key results of this work show a 3X gain in throughput relative to 802.11(n) in typical multi-antenna wireless networks that have 20 transmitter-receiver pairs, a link-length of 10 meters, four receive antennas and a single transmit antenna. We also show a reduction in delay by a factor of two when the networks are heavily loaded. We find that the link-rank is a key parameter affecting STIMAC gains over Wi-Fi. In simulations of networks with 40 transmit-receiver pairs, link-rank of three, a link-length of 10 meters, and eight transmit and receive antennas in which the transmitter beamforms to its target receiver in its strongest target channel mode, we find gains in throughput of at least 5X over the 802.11(n) protocol.by Danielle A. Hinton.Ph.D

    Design, Modeling, and Analysis for MAC Protocols in Ultra-wideband Networks

    Get PDF
    Ultra-wideband (UWB) is an appealing transmission technology for short-range, bandwidth demanded wireless communications. With the data rate of several hundred megabits per second, UWB demonstrates great potential in supporting multimedia streams such as high-definition television (HDTV), voice over Internet Protocol (VoIP), and console gaming in office or home networks, known as the wireless personal area network (WPAN). While vast research effort has been made on the physical layer issues of UWB, the corresponding medium access control (MAC) protocols that exploit UWB technology have not been well developed. Given an extremely wide bandwidth of UWB, a fundamental problem on how to manage multiple users to efficiently utilize the bandwidth is a MAC design issue. Without explicitly considering the physical properties of UWB, existing MAC protocols are not optimized for UWB-based networks. In addition, the limited processing capability of UWB devices poses challenges to the design of low-complexity MAC protocols. In this thesis, we comprehensively investigate the MAC protocols for UWB networks. The objective is to link the physical characteristics of UWB with the MAC protocols to fully exploit its advantage. We consider two themes: centralized and distributed UWB networks. For centralized networks, the most critical issue surrounding the MAC protocol is the resource allocation with fairness and quality of service (QoS) provisioning. We address this issue by breaking down into two scenarios: homogeneous and heterogeneous network configurations. In the homogeneous case, users have the same bandwidth requirement, and the objective of resource allocation is to maximize the network throughput. In the heterogeneous case, users have different bandwidth requirements, and the objective of resource allocation is to provide differentiated services. For both design objectives, the optimal scheduling problem is NP-hard. Our contributions lie in the development of low-complexity scheduling algorithms that fully exploit the characteristics of UWB. For distributed networks, the MAC becomes node-based problems, rather than link-based problems as in centralized networks. Each node either contends for channel access or reserves transmission opportunity through negotiation. We investigate two representative protocols that have been adopted in the WiMedia specification for future UWB-based WPANs. One is a contention-based protocol called prioritized channel access (PCA), which employs the same mechanisms as the enhanced distributed channel access (EDCA) in IEEE 802.11e for providing differentiated services. The other is a reservation-based protocol called distributed reservation protocol (DRP), which allows time slots to be reserved in a distributed manner. Our goal is to identify the capabilities of these two protocols in supporting multimedia applications for UWB networks. To achieve this, we develop analytical models and conduct detailed analysis for respective protocols. The proposed analytical models have several merits. They are accurate and provide close-form expressions with low computational effort. Through a cross-layer approach, our analytical models can capture the near-realistic protocol behaviors, thus useful insights into the protocol can be obtained to improve or fine-tune the protocol operations. The proposed models can also be readily extended to incorporate more sophisticated considerations, which should benefit future UWB network design

    Optimising lower layers of the protocol stack to improve communication performance in a wireless temperature sensor network

    Get PDF
    The function of wireless sensor networks is to monitor events or gather information and report the information to a sink node, a central location or a base station. It is a requirement that the information is transmitted through the network efficiently. Wireless communication is the main activity that consumes energy in wireless sensor networks through idle listening, overhearing, interference and collision. It becomes essential to limit energy usage while maintaining communication between the sensor nodes and the sink node as the nodes die after the battery has been exhausted. Thus, conserving energy in a wireless sensor network is of utmost importance. Numerous methods to decrease energy expenditure and extend the lifetime of the network have been proposed. Researchers have devised methods to efficiently utilise the limited energy available for wireless sensor networks by optimising the design parameters and protocols. Cross-layer optimisation is an approach that has been employed to improve wireless communication. The essence of cross-layer scheme is to optimise the exchange and control of data between two or more layers to improve efficiency. The number of transmissions is therefore a vital element in evaluating overall energy usage. In this dissertation, a Markov Chain model was employed to analyse the tuning of two layers of the protocol stack, namely the Physical Layer (PHY) and Media Access Control layer (MAC), to find possible energy gains. The study was conducted utilising the IEEE 802.11 channel, SensorMAC (SMAC) and Slotted-Aloha (S-Aloha) medium access protocols in a star topology Wireless Temperature Sensor Network (WTSN). The research explored the prospective energy gains that could be realised through optimizing the Forward Error Correction (FEC) rate. Different Reed Solomon codes were analysed to explore the effect of protocol tuning on energy efficiency, namely transmission power, modulation method, and channel access. The case where no FEC code was used and analysed as the control condition. A MATLAB simulation model was used to identify the statistics of collisions, overall packets transmitted, as well as the total number of slots used during the transmission phase. The bit error probability results computed analytically were utilised in the simulation model to measure the probability of successful transmitting data in the physical layer. The analytical values and the simulation results were compared to corroborate the correctness of the models. The results indicate that energy gains can be accomplished by the suggested layer tuning approach.Electrical and Mining EngineeringM. Tech. (Electrical Engineering

    Enlace de retorno satelital DVB-RCS2 : modelagem de fila e otimização de alocação de recursos baseada em teoria dos jogos

    Get PDF
    Tese (doutorado) — Universidade de Brasília, Faculdade de Tecnologia, Departamento de Engenharia Elétrica, 2022.É esperado que satélites tenham um papel fundamental no futuro dos sistemas de comunicação, integrando-se às infraestruturas terrestres. Esta dissertação de mestrado propõe três contribuições principais: primeiramente, se apresenta um arcabouço de simulação capaz de prover detalhes da performance de redes de comunicação satelital em cenários realistas. Este arcabouço aplica uma metodologia orientada a eventos, modelando a rede de comunicação como um sistema baseado em eventos discretos (DES), focando no enlace de retorno do protocolo DVB-RCS2. Três diferentes cenários simulados demonstram os possíveis usos das saídas do simulador para entender o comportamento dinâmico da rede e alcançar um ponto ótimo de operação do sistema. Cada cenário explora uma característica diferente do simulador, enquanto cobre um grande território de usuários, que em nosso caso estudo o país de escolha foi o Brasil. Em um segundo tópico, este trabalho introduz um novo algoritmo modificado do método de alocação de timeslots baseado em teoria dos jogos, aplicando-se no protocolo DVB-RCS2. Este procedimento considera a eficiência espectral do terminal como um parâmetro de peso para o problema de otimização convexa resultante da solução da barganha de Nash. Este novo método garante o cumprimento dos requisitos de Qualidade de Serviço (QoS) enquanto provê uma medida de justiça maior; os resultados mostram uma melhoria de 5% na medida de justiça, com uma diminuição de 75% no desvio padrão de justiça entre os quadros, também alcançando um aumento de 12% na satisfação individual média pela alocação de capacidade aos terminais. Por final, apresentamos uma modelagem alternativa para o enlace de retorno do DVB-RCS2 usando cadeias de Markov, predizendo parâmetros tradicionais de fila como a intensidade de tráfego, tempo médio de espera, dentre outros. Utilizamos dados coletados de uma série de simulações usando o arcabouço orientado a eventos para validar o modelo de filas como uma aproximação numérica útil para o cenário real de aplicação. Nós apresentamos o algoritmo de alocação de controle do parâmetro alfa (GTAC) que consegue controlar o tempo médio de espera de um RCST na fila, respeitando um limiar de tempo enquanto otimiza a taxa média média de transmissão de dados dos terminais.Satellite networks are expected to play a vital role in future communication systems, with complex features and seamless integration with ground-based infrastructure. This dissertation proposes three main contributions: firstly, it presents a novel simulation framework capable of providing a detailed assessment of a satellite communication’s network performance in realistic scenarios, employing an event-driven methodology and modeling the communications network as a DES (discrete event system). This work focuses on the return link of the Digital Video Broadcast Return Channel via Satellite (DVB-RCS2) standard. Three different scenarios demonstrate possible uses of the simulator’s output to understand the network’s dynamic behavior and achievable optimal system operation. Each scenario explores a different feature of the simulator. The simulated range covers a large territory with thousands of users, which in our case study was the country of Brazil. In the second theme, this work introduces a novel algorithm modification for the conventional game theory-based time slot assignment method, applying it to the DVB-RCS system. This procedure considers the spectral efficiency as a weighting parameter. We use it as an input for the resulting convex optimization problem of the Nash Bargaining Solution. This approach guarantees the fulfillment of Quality of Service (QoS) constraints while maintaining a higher fairness measure; results show a 5% improvement in fairness, with a 73% decrease in the standard deviation of fairness between frames, while also managing to reach a 12.5% increase in average normalized terminal BTU allocation satisfaction. Lastly, we present an alternative queuing model analysis for the DVB-RCS2 return link using Markov chains, developed to predict traditional queue parameters such as traffic intensity, average queue size, average waiting time, among others. We used data gathered from a series of simulations using the DES framework to validate this queuing model as a useful numerical approximation to the real application scenario, and, by the end of the scope, we present the alpha allocation algorithm (GTAC) that can maintain the average waiting time of a terminal in the queue to a threshold while optimizing the average terminal throughput

    Cognitive Radio Systems

    Get PDF
    Cognitive radio is a hot research area for future wireless communications in the recent years. In order to increase the spectrum utilization, cognitive radio makes it possible for unlicensed users to access the spectrum unoccupied by licensed users. Cognitive radio let the equipments more intelligent to communicate with each other in a spectrum-aware manner and provide a new approach for the co-existence of multiple wireless systems. The goal of this book is to provide highlights of the current research topics in the field of cognitive radio systems. The book consists of 17 chapters, addressing various problems in cognitive radio systems

    A MAC protocol for IP-based CDMA wireless networks.

    Get PDF
    Thesis (M.Sc.)-University of KwaZulu-Natal, Durban, 2005.The evolution of the intemet protocol (IP) to offer quality of service (QoS) makes it a suitable core network protocol for next generation networks (NGN). The QoS features incorporated to IP will enable future lP-based wireless networks to meet QoS requirements of various multimedia traffic. The Differentiated Service (Diffserv) Architecture is a promising QoS technology due to its scalability which arises from traffic flow aggregates. For this reason, in this dissertation a network infrastructure based on DiffServ is assumed. This architecture provides assured service (AS) and premium service (PrS) classes in addition to best-effort service (BE). The medium access control (MAC) protocol is one of the important design issues in wireless networks. In a wireless network carrying multimedia traffic, the MAC protocol is required to provide simultaneous support for a wide variety of traffic types, support traffic with delay and jitter bounds, and assign bandwidth in an efficient and fair manner among traffic classes. Several MAC protocols capable of supporting multimedia services have been proposed in the literature, the majority of which were designed for wireless A1M (Asynchronous Transfer Mode). The focus of this dissertation is on time division multiple access and code division multiple access (TDMAlCDMA) based MAC protocols that support QoS in lP-based wireless networks. This dissertation begins by giving a survey of wireless MAC protocols. The survey considers MAC protocols for centralised wireless networks and classifies them according to their multiple access technology and as well as their method of resource sharing. A novel TDMAlCDMA based MAC protocol incorporating techniques from existing protocols is then proposed. To provide the above-mentioned services, the bandwidth is partitioned amongst AS and PrS classes. The BE class utilizes the remaining bandwidth from the two classes because it does not have QoS requirements. The protocol employs a demand assignment (DA) scheme to support traffic from PrS and AS classes. BE traffic is supported by a random reservation access scheme with dual multiple access interference (MAl) admission thresholds. The performance of the protocol, i.e. the AS or PrS call blocking probability, and BE throughput are evaluated through Markov analytical models and Monte-Carlo simulations. Furthermore, the protocol is modified and incorporated into IEEE 802.16 broadband wireless access (BWA) network

    Enhancing infotainment applications quality of service in vehicular ad hoc networks

    Full text link
    Les réseaux ad hoc de véhicules accueillent une multitude d’applications intéressantes. Parmi celles-ci, les applications d’info-divertissement visent à améliorer l’expérience des passagers. Ces applications ont des exigences rigides en termes de délai de livraison et de débit. De nombreuses approches ont été proposées pour assurer la qualité du service des dites applications. Elles sont réparties en deux couches : réseau et contrôle d’accès. Toutefois, ces méthodes présentent plusieurs lacunes. Cette thèse a trois volets. Le premier aborde la question du routage dans le milieu urbain. A cet égard, un nouveau protocole, appelé SCRP, a été proposé. Il exploite l’information sur la circulation des véhicules en temps réel pour créer des épines dorsales sur les routes et les connecter aux intersections à l’aide des nœuds de pont. Ces derniers collectent des informations concernant la connectivité et le délai, utilisées pour choisir les chemins de routage ayant un délai de bout-en-bout faible. Le deuxième s’attaque au problème d’affectation des canaux de services afin d’augmenter le débit. A cet effet, un nouveau mécanisme, appelé ASSCH, a été conçu. ASSCH collecte des informations sur les canaux en temps réel et les donne à un modèle stochastique afin de prédire leurs états dans l’avenir. Les canaux les moins encombrés sont sélectionnés pour être utilisés. Le dernier volet vise à proposer un modèle analytique pour examiner la performance du mécanisme EDCA de la norme IEEE 802.11p. Ce modèle tient en compte plusieurs facteurs, dont l’opportunité de transmission, non exploitée dans IEEE 802.11p.The fact that vehicular ad hoc network accommodates two types of communications, Vehicle-to-Vehicle and Vehicle-to-Infrastructure, has opened the door for a plethora of interesting applications to thrive. Some of these applications, known as infotainment applications, focus on enhancing the passengers' experience. They have rigid requirements in terms of delivery delay and throughput. Numerous approaches have been proposed, at medium access control and routing layers, to enhance the quality of service of such applications. However, existing schemes have several shortcomings. Subsequently, the design of new and efficient approaches is vital for the proper functioning of infotainment applications. This work proposes three schemes. The first is a novel routing protocol, labeled SCRP. It leverages real-time vehicular traffic information to create backbones over road segments and connect them at intersections using bridge nodes. These nodes are responsible for collecting connectivity and delay information, which are used to select routing paths with low end-to-end delay. The second is an altruistic service channel selection scheme, labeled ASSCH. It first collects real-time service channels information and feeds it to a stochastic model that predicts the state of these channels in the near future. The least congested channels are then selected to be used. The third is an analytical model for the performance of the IEEE 802.11p Enhanced Distributed Channel Access mechanism that considers various factors, including the transmission opportunity (TXOP), unexploited by IEEE 802.11p
    • …
    corecore