7,377 research outputs found

    Observer-biased bearing condition monitoring: from fault detection to multi-fault classification

    Get PDF
    Bearings are simultaneously a fundamental component and one of the principal causes of failure in rotary machinery. The work focuses on the employment of fuzzy clustering for bearing condition monitoring, i.e., fault detection and classification. The output of a clustering algorithm is a data partition (a set of clusters) which is merely a hypothesis on the structure of the data. This hypothesis requires validation by domain experts. In general, clustering algorithms allow a limited usage of domain knowledge on the cluster formation process. In this study, a novel method allowing for interactive clustering in bearing fault diagnosis is proposed. The method resorts to shrinkage to generalize an otherwise unbiased clustering algorithm into a biased one. In this way, the method provides a natural and intuitive way to control the cluster formation process, allowing for the employment of domain knowledge to guiding it. The domain expert can select a desirable level of granularity ranging from fault detection to classification of a variable number of faults and can select a specific region of the feature space for detailed analysis. Moreover, experimental results under realistic conditions show that the adopted algorithm outperforms the corresponding unbiased algorithm (fuzzy c-means) which is being widely used in this type of problems. (C) 2016 Elsevier Ltd. All rights reserved.Grant number: 145602

    Latent class analysis for segmenting preferences of investment bonds

    Get PDF
    Market segmentation is a key component of conjoint analysis which addresses consumer preference heterogeneity. Members in a segment are assumed to be homogenous in their views and preferences when worthing an item but distinctly heterogenous to members of other segments. Latent class methodology is one of the several conjoint segmentation procedures that overcome the limitations of aggregate analysis and a-priori segmentation. The main benefit of Latent class models is that market segment membership and regression parameters of each derived segment are estimated simultaneously. The Latent class model presented in this paper uses mixtures of multivariate conditional normal distributions to analyze rating data, where the likelihood is maximized using the EM algorithm. The application focuses on customer preferences for investment bonds described by four attributes; currency, coupon rate, redemption term and price. A number of demographic variables are used to generate segments that are accessible and actionable.peer-reviewe

    Modeling and Recognition of Smart Grid Faults by a Combined Approach of Dissimilarity Learning and One-Class Classification

    Full text link
    Detecting faults in electrical power grids is of paramount importance, either from the electricity operator and consumer viewpoints. Modern electric power grids (smart grids) are equipped with smart sensors that allow to gather real-time information regarding the physical status of all the component elements belonging to the whole infrastructure (e.g., cables and related insulation, transformers, breakers and so on). In real-world smart grid systems, usually, additional information that are related to the operational status of the grid itself are collected such as meteorological information. Designing a suitable recognition (discrimination) model of faults in a real-world smart grid system is hence a challenging task. This follows from the heterogeneity of the information that actually determine a typical fault condition. The second point is that, for synthesizing a recognition model, in practice only the conditions of observed faults are usually meaningful. Therefore, a suitable recognition model should be synthesized by making use of the observed fault conditions only. In this paper, we deal with the problem of modeling and recognizing faults in a real-world smart grid system, which supplies the entire city of Rome, Italy. Recognition of faults is addressed by following a combined approach of multiple dissimilarity measures customization and one-class classification techniques. We provide here an in-depth study related to the available data and to the models synthesized by the proposed one-class classifier. We offer also a comprehensive analysis of the fault recognition results by exploiting a fuzzy set based reliability decision rule

    Semi-supervised model-based clustering with controlled clusters leakage

    Full text link
    In this paper, we focus on finding clusters in partially categorized data sets. We propose a semi-supervised version of Gaussian mixture model, called C3L, which retrieves natural subgroups of given categories. In contrast to other semi-supervised models, C3L is parametrized by user-defined leakage level, which controls maximal inconsistency between initial categorization and resulting clustering. Our method can be implemented as a module in practical expert systems to detect clusters, which combine expert knowledge with true distribution of data. Moreover, it can be used for improving the results of less flexible clustering techniques, such as projection pursuit clustering. The paper presents extensive theoretical analysis of the model and fast algorithm for its efficient optimization. Experimental results show that C3L finds high quality clustering model, which can be applied in discovering meaningful groups in partially classified data

    Using Sub-optimal Kalman Filtering for Anomaly Detection in Networks

    Full text link
    Possibility theory can be used as a suitable frameworkto build a normal behavioral model for an anomaly detector.Based on linear and/or nonlinear systems, sub-optimal filteringapproaches based on the Extended Kalman Filter and the UnscentedKalman Filter are calibrated for entropy reduction andcould be a good basis to find a suitable model to build a decisionvariable where, a decision process can be applied to identifyanomalous events. Sophisticated fuzzy clustering algorithms canbe used to find a set of clusters built on the decision variable,where anomalies might happen inside a few of them. To achievean efficient detection step, a robust decision scheme is built, bymeans of possibility distributions, to separate the clusters intonormal and abnormal spaces. We had studied the false alarmrate vs. detection rate trade-off by means of ROC (ReceiverOperating Characteristic) curves to show the results. We validatethe approach over different realistic network traffic
    corecore