161 research outputs found

    Robotics-Assisted Needle Steering for Percutaneous Interventions: Modeling and Experiments

    Get PDF
    Needle insertion and guidance plays an important role in medical procedures such as brachytherapy and biopsy. Flexible needles have the potential to facilitate precise targeting and avoid collisions during medical interventions while reducing trauma to the patient and post-puncture issues. Nevertheless, error introduced during guidance degrades the effectiveness of the planned therapy or diagnosis. Although steering using flexible bevel-tip needles provides great mobility and dexterity, a major barrier is the complexity of needle-tissue interaction that does not lend itself to intuitive control. To overcome this problem, a robotic system can be employed to perform trajectory planning and tracking by manipulation of the needle base. This research project focuses on a control-theoretic approach and draws on the rich literature from control and systems theory to model needle-tissue interaction and needle flexion and then design a robotics-based strategy for needle insertion/steering. The resulting solutions will directly benefit a wide range of needle-based interventions. The outcome of this computer-assisted approach will not only enable us to perform efficient preoperative trajectory planning, but will also provide more insight into needle-tissue interaction that will be helpful in developing advanced intraoperative algorithms for needle steering. Experimental validation of the proposed methodologies was carried out on a state of-the-art 5-DOF robotic system designed and constructed in-house primarily for prostate brachytherapy. The system is equipped with a Nano43 6-DOF force/torque sensor (ATI Industrial Automation) to measure forces and torques acting on the needle shaft. In our setup, an Aurora electromagnetic tracker (Northern Digital Inc.) is the sensing device used for measuring needle deflection. A multi-threaded application for control, sensor readings, data logging and communication over the ethernet was developed using Microsoft Visual C 2005, MATLAB 2007 and the QuaRC Toolbox (Quanser Inc.). Various artificial phantoms were developed so as to create a realistic medium in terms of elasticity and insertion force ranges; however, they simulated a uniform environment without exhibiting complexities of organic tissues. Experiments were also conducted on beef liver and fresh chicken breast, beef, and ham, to investigate the behavior of a variety biological tissues

    Sensorisation of a novel biologically inspired flexible needle

    Get PDF
    Percutaneous interventions are commonly performed during minimally invasive brain surgery, where a straight rigid instrument is inserted through a small incision to access a deep lesion in the brain. Puncturing a vessel during this procedure can be a life-threatening complication. Embedding a forward-looking sensor in a rigid needle has been proposed to tackle this problem; however, using a rigid needle, the procedure needs to be interrupted if a vessel is detected. Steerable needle technology could be used to avoid obstacles, such as blood vessels, due to its ability to follow curvilinear paths, but research to date was lacking in this respect. This thesis aims to investigate the deployment of forward-looking sensors for vessel detection in a steerable needle. The needle itself is based on a bioinspired programmable bevel-tip needle (PBN), a multi-segment design featuring four hollow working channels. In this thesis, laser Doppler flowmetry (LDF) is initially characterised to ensure that the sensor fulfils the minimum requirements for it to be used in conjunction with the needle. Subsequently, vessel reconstruction algorithms are proposed. To determine the axial and off-axis position of the vessel with respect to the probe, successive measurements of the LDF sensor are used. Ideally, full knowledge of the vessel orientation is required to execute an avoidance strategy. Using two LDF probes and a novel signal processing method described in this thesis, the predicted possible vessel orientations can be reduced to four, a setup which is explored here to demonstrate viable obstacle detection with only partial sensor information. Relative measurements from four LDF sensors are also explored to classify possible vessel orientations in full and without ambiguity, but under the assumption that the vessel is perpendicular to the needle insertion axis. Experimental results on a synthetic grey matter phantom are presented, which confirm these findings. To release the perpendicularity assumption, the thesis concludes with the description of a machine learning technique based on a Long Short-term memory network, which enables a vessel's spatial position, cross-sectional diameter and full pose to be predicted with sub-millimetre accuracy. Simulated and in-vitro examinations of vessel detection with this approach are used to demonstrate effective predictive ability. Collectively, these results demonstrate that the proposed steerable needle sensorisation is viable and could lead to improved safety during robotic assisted needle steering interventions.Open Acces

    Robotic System Development for Precision MRI-Guided Needle-Based Interventions

    Get PDF
    This dissertation describes the development of a methodology for implementing robotic systems for interventional procedures under intraoperative Magnetic Resonance Imaging (MRI) guidance. MRI is an ideal imaging modality for surgical guidance of diagnostic and therapeutic procedures, thanks to its ability to perform high resolution, real-time, and high soft tissue contrast imaging without ionizing radiation. However, the strong magnetic field and sensitivity to radio frequency signals, as well as tightly confined scanner bore render great challenges to developing robotic systems within MRI environment. Discussed are potential solutions to address engineering topics related to development of MRI-compatible electro-mechanical systems and modeling of steerable needle interventions. A robotic framework is developed based on a modular design approach, supporting varying MRI-guided interventional procedures, with stereotactic neurosurgery and prostate cancer therapy as two driving exemplary applications. A piezoelectrically actuated electro-mechanical system is designed to provide precise needle placement in the bore of the scanner under interactive MRI-guidance, while overcoming the challenges inherent to MRI-guided procedures. This work presents the development of the robotic system in the aspects of requirements definition, clinical work flow development, mechanism optimization, control system design and experimental evaluation. A steerable needle is beneficial for interventional procedures with its capability to produce curved path, avoiding anatomical obstacles or compensating for needle placement errors. Two kinds of steerable needles are discussed, i.e. asymmetric-tip needle and concentric-tube cannula. A novel Gaussian-based ContinUous Rotation and Variable-curvature (CURV) model is proposed to steer asymmetric-tip needle, which enables variable curvature of the needle trajectory with independent control of needle rotation and insertion. While concentric-tube cannula is suitable for clinical applications where a curved trajectory is needed without relying on tissue interaction force. This dissertation addresses fundamental challenges in developing and deploying MRI-compatible robotic systems, and enables the technologies for MRI-guided needle-based interventions. This study applied and evaluated these techniques to a system for prostate biopsy that is currently in clinical trials, developed a neurosurgery robot prototype for interstitial thermal therapy of brain cancer under MRI guidance, and demonstrated needle steering using both asymmetric tip and pre-bent concentric-tube cannula approaches on a testbed

    Multi Degree of Freedom Hinge Joints Embedded on Tubes for Miniature Steerable Medical Devices

    Get PDF
    With the proliferation of successful minimally invasive surgical techniques, comes the challenge of shrinking the size of surgical instruments further to facilitate use in applications such as neurosurgery, pediatric surgery, and needle procedures. The present thesis introduces laser machined, multi-degree-of-freedom (DoF) hinge joints embedded on tubes, as a possible means to realize such miniature instruments without the need for any assembly. A method to design such a joint for an estimated range of motion is explored by using geometric principles. A geometric model is developed to characterize the joint and relate it to the laser machining parameters, design parameters, and the workpiece parameters. The extent of interference between the moving parts of the joint can be used to predict the range of motion of the joint for rigid tubes and for future design optimization. The total usable workspace is estimated using kinematic principles for joints in series and for two sets of orthogonal joints. The predicted range of motion was compared to the measured values for fabricated samples of different hinge sizes and kerf dimensions, and it was shown that the predicted values are close to the measured ranges across samples. The embedded hinge joints described in this thesis could be used for micro-robotic applications and minimally invasive surgical devices for neurosurgery and pediatric surgery. Our work can open up avenues to a new class of miniature robotic medical devices with hinge joints and a usable channel for drug delivery
    • …
    corecore