5,097 research outputs found

    A Composite Quantile Fourier Neural Network for Multi-Step Probabilistic Forecasting of Nonstationary Univariate Time Series

    Full text link
    Point forecasting of univariate time series is a challenging problem with extensive work having been conducted. However, nonparametric probabilistic forecasting of time series, such as in the form of quantiles or prediction intervals is an even more challenging problem. In an effort to expand the possible forecasting paradigms we devise and explore an extrapolation-based approach that has not been applied before for probabilistic forecasting. We present a novel quantile Fourier neural network is for nonparametric probabilistic forecasting of univariate time series. Multi-step predictions are provided in the form of composite quantiles using time as the only input to the model. This effectively is a form of extrapolation based nonlinear quantile regression applied for forecasting. Experiments are conducted on eight real world datasets that demonstrate a variety of periodic and aperiodic patterns. Nine naive and advanced methods are used as benchmarks including quantile regression neural network, support vector quantile regression, SARIMA, and exponential smoothing. The obtained empirical results validate the effectiveness of the proposed method in providing high quality and accurate probabilistic predictions.Comment: 59 page

    Iterative Joint Image Demosaicking and Denoising using a Residual Denoising Network

    Full text link
    Modern digital cameras rely on the sequential execution of separate image processing steps to produce realistic images. The first two steps are usually related to denoising and demosaicking where the former aims to reduce noise from the sensor and the latter converts a series of light intensity readings to color images. Modern approaches try to jointly solve these problems, i.e. joint denoising-demosaicking which is an inherently ill-posed problem given that two-thirds of the intensity information is missing and the rest are perturbed by noise. While there are several machine learning systems that have been recently introduced to solve this problem, the majority of them relies on generic network architectures which do not explicitly take into account the physical image model. In this work we propose a novel algorithm which is inspired by powerful classical image regularization methods, large-scale optimization, and deep learning techniques. Consequently, our derived iterative optimization algorithm, which involves a trainable denoising network, has a transparent and clear interpretation compared to other black-box data driven approaches. Our extensive experimentation line demonstrates that our proposed method outperforms any previous approaches for both noisy and noise-free data across many different datasets. This improvement in reconstruction quality is attributed to the rigorous derivation of an iterative solution and the principled way we design our denoising network architecture, which as a result requires fewer trainable parameters than the current state-of-the-art solution and furthermore can be efficiently trained by using a significantly smaller number of training data than existing deep demosaicking networks. Code and results can be found at https://github.com/cig-skoltech/deep_demosaickComment: arXiv admin note: substantial text overlap with arXiv:1803.0521

    VarFA: A Variational Factor Analysis Framework For Efficient Bayesian Learning Analytics

    Full text link
    We propose VarFA, a variational inference factor analysis framework that extends existing factor analysis models for educational data mining to efficiently output uncertainty estimation in the model's estimated factors. Such uncertainty information is useful, for example, for an adaptive testing scenario, where additional tests can be administered if the model is not quite certain about a students' skill level estimation. Traditional Bayesian inference methods that produce such uncertainty information are computationally expensive and do not scale to large data sets. VarFA utilizes variational inference which makes it possible to efficiently perform Bayesian inference even on very large data sets. We use the sparse factor analysis model as a case study and demonstrate the efficacy of VarFA on both synthetic and real data sets. VarFA is also very general and can be applied to a wide array of factor analysis models.Comment: edm 202

    Towards Practical Indoor Positioning Based on Massive MIMO Systems

    Full text link
    We showcase the practicability of an indoor positioning system (IPS) solely based on Neural Networks (NNs) and the channel state information (CSI) of a (Massive) multiple-input multiple-output (MIMO) communication system, i.e., only build on the basis of data that is already existent in today's systems. As such our IPS system promises both, a good accuracy without the need of any additional protocol/signaling overhead for the user localization task. In particular, we propose a tailored NN structure with an additional phase branch as feature extractor and (compared to previous results) a significantly reduced amount of trainable parameters, leading to a minimization of the amount of required training data. We provide actual measurements for indoor scenarios with up to 64 antennas covering a large area of 80m2. In the second part, several robustness investigations for real-measurements are conducted, i.e., once trained, we analyze the recall accuracy over a time-period of several days. Further, we analyze the impact of pedestrians walking in-between the measurements and show that finetuning and pre-training of the NN helps to mitigate effects of hardware drifts and alterations in the propagation environment over time. This reduces the amount of required training samples at equal precision and, thereby, decreases the effort of the costly training data acquisitionComment: Submitted to VTC2019 Fal

    An Incremental Self-Organizing Architecture for Sensorimotor Learning and Prediction

    Full text link
    During visuomotor tasks, robots must compensate for temporal delays inherent in their sensorimotor processing systems. Delay compensation becomes crucial in a dynamic environment where the visual input is constantly changing, e.g., during the interacting with a human demonstrator. For this purpose, the robot must be equipped with a prediction mechanism for using the acquired perceptual experience to estimate possible future motor commands. In this paper, we present a novel neural network architecture that learns prototypical visuomotor representations and provides reliable predictions on the basis of the visual input. These predictions are used to compensate for the delayed motor behavior in an online manner. We investigate the performance of our method with a set of experiments comprising a humanoid robot that has to learn and generate visually perceived arm motion trajectories. We evaluate the accuracy in terms of mean prediction error and analyze the response of the network to novel movement demonstrations. Additionally, we report experiments with incomplete data sequences, showing the robustness of the proposed architecture in the case of a noisy and faulty visual sensor

    ODE2^2VAE: Deep generative second order ODEs with Bayesian neural networks

    Full text link
    We present Ordinary Differential Equation Variational Auto-Encoder (ODE2^2VAE), a latent second order ODE model for high-dimensional sequential data. Leveraging the advances in deep generative models, ODE2^2VAE can simultaneously learn the embedding of high dimensional trajectories and infer arbitrarily complex continuous-time latent dynamics. Our model explicitly decomposes the latent space into momentum and position components and solves a second order ODE system, which is in contrast to recurrent neural network (RNN) based time series models and recently proposed black-box ODE techniques. In order to account for uncertainty, we propose probabilistic latent ODE dynamics parameterized by deep Bayesian neural networks. We demonstrate our approach on motion capture, image rotation and bouncing balls datasets. We achieve state-of-the-art performance in long term motion prediction and imputation tasks

    Supervised COSMOS Autoencoder: Learning Beyond the Euclidean Loss!

    Full text link
    Autoencoders are unsupervised deep learning models used for learning representations. In literature, autoencoders have shown to perform well on a variety of tasks spread across multiple domains, thereby establishing widespread applicability. Typically, an autoencoder is trained to generate a model that minimizes the reconstruction error between the input and the reconstructed output, computed in terms of the Euclidean distance. While this can be useful for applications related to unsupervised reconstruction, it may not be optimal for classification. In this paper, we propose a novel Supervised COSMOS Autoencoder which utilizes a multi-objective loss function to learn representations that simultaneously encode the (i) "similarity" between the input and reconstructed vectors in terms of their direction, (ii) "distribution" of pixel values of the reconstruction with respect to the input sample, while also incorporating (iii) "discriminability" in the feature learning pipeline. The proposed autoencoder model incorporates a Cosine similarity and Mahalanobis distance based loss function, along with supervision via Mutual Information based loss. Detailed analysis of each component of the proposed model motivates its applicability for feature learning in different classification tasks. The efficacy of Supervised COSMOS autoencoder is demonstrated via extensive experimental evaluations on different image datasets. The proposed model outperforms existing algorithms on MNIST, CIFAR-10, and SVHN databases. It also yields state-of-the-art results on CelebA, LFWA, Adience, and IJB-A databases for attribute prediction and face recognition, respectively

    Neural Random Forests

    Full text link
    Given an ensemble of randomized regression trees, it is possible to restructure them as a collection of multilayered neural networks with particular connection weights. Following this principle, we reformulate the random forest method of Breiman (2001) into a neural network setting, and in turn propose two new hybrid procedures that we call neural random forests. Both predictors exploit prior knowledge of regression trees for their architecture, have less parameters to tune than standard networks, and less restrictions on the geometry of the decision boundaries than trees. Consistency results are proved, and substantial numerical evidence is provided on both synthetic and real data sets to assess the excellent performance of our methods in a large variety of prediction problems

    RelExt: Relation Extraction using Deep Learning approaches for Cybersecurity Knowledge Graph Improvement

    Full text link
    Security Analysts that work in a `Security Operations Center' (SoC) play a major role in ensuring the security of the organization. The amount of background knowledge they have about the evolving and new attacks makes a significant difference in their ability to detect attacks. Open source threat intelligence sources, like text descriptions about cyber-attacks, can be stored in a structured fashion in a cybersecurity knowledge graph. A cybersecurity knowledge graph can be paramount in aiding a security analyst to detect cyber threats because it stores a vast range of cyber threat information in the form of semantic triples which can be queried. A semantic triple contains two cybersecurity entities with a relationship between them. In this work, we propose a system to create semantic triples over cybersecurity text, using deep learning approaches to extract possible relationships. We use the set of semantic triples generated through our system to assert in a cybersecurity knowledge graph. Security Analysts can retrieve this data from the knowledge graph, and use this information to form a decision about a cyber-attack

    Variational Inference for Data-Efficient Model Learning in POMDPs

    Full text link
    Partially observable Markov decision processes (POMDPs) are a powerful abstraction for tasks that require decision making under uncertainty, and capture a wide range of real world tasks. Today, effective planning approaches exist that generate effective strategies given black-box models of a POMDP task. Yet, an open question is how to acquire accurate models for complex domains. In this paper we propose DELIP, an approach to model learning for POMDPs that utilizes amortized structured variational inference. We empirically show that our model leads to effective control strategies when coupled with state-of-the-art planners. Intuitively, model-based approaches should be particularly beneficial in environments with changing reward structures, or where rewards are initially unknown. Our experiments confirm that DELIP is particularly effective in this setting
    • …
    corecore