227 research outputs found

    Joint Image Reconstruction and Nonrigid Motion Estimation with a Simple Penalty That Encourages Local Invertibility

    Full text link
    Motion artifacts are a significant issue in medical image reconstruction. There are many methods for incorporating motion information into image reconstruction. However, there are fewer studies that focus on deformation regularization in motioncompensated image reconstruction. The usual choice for deformation regularization has been penalty functions based on the assumption that tissues are elastic. In the image registration field, there have been some methods proposed that impose deformation invertibility using constraints or regularization, assuming that organ motions are invertible transformations. However, most of these methods require very high memory or computation complexity, making them poorly suited for dealing with multiple images simultaneously in motion-compensated image reconstruction. Recently we proposed an image registration method that uses a simple penalty function based on a sufficient condition for the local invertibility of deformations.1 That approach encourages local invertibility in a fast and memory-efficient way. This paper investigates the use of that regularization method for the more challenging problem of joint image reconstruction and nonrigid motion estimation. A 2D PET simulation (based on realistic motion from real patient CT data) demonstrates the benefits of such motion regularization for joint image reconstruction/registration.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/85929/1/Fessler237.pd

    A Simple Regularizer for B-spline Nonrigid Image Registration That Encourages Local Invertibility

    Full text link
    Nonrigid image registration is an important task for many medical imaging applications. In particular, for radiation oncology it is desirable to track respiratory motion for thoracic cancer treatment. B-splines are convenient for modeling nonrigid deformations, but ensuring invertibility can be a challenge. This paper describes sufficient conditions for local invertibility of deformations based on B-spline bases. These sufficient conditions can be used with constrained optimization to enforce local invertibility. We also incorporate these conditions into nonrigid image registration methods based on a simple penalty approach that encourages diffeomorphic deformations. Traditional Jacobian penalty methods penalize negative Jacobian determinant values only at grid points. In contrast, our new method enforces a sufficient condition for invertibility directly on the deformation coefficients to encourage invertibility globally over a 3-D continuous domain. The proposed penalty approach requires substantially less compute time than Jacobian penalties per iteration.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/85951/1/Fessler21.pd

    Spatial Resolution and Noise Properties of Regularized Motion-Compensated Image Reconstruction

    Full text link
    Reducing motion artifacts is an important problem in medical image reconstruction. Using gating to partition data into separate frames can reduce motion artifacts but can increase noise in images reconstructed from individual frames. One can pool the frames to reduce noise by using motion-compensated image reconstruction (MCIR) methods. MCIR methods have been studied in many medical imaging modalities to reduce both noise and motion artifacts. However, there has been less analysis of the spatial resolution and noise properties of MCIR methods. This paper analyzes the spatial resolution and noise properties of MCIR methods based on a general parametric motion model. For simplicity we consider the motion to be given. We present a method to choose quadratic spatial regularization parameters to provide predictable resolution properties that are independent of the object and the motion. The noise analysis shows that the estimator variance depends on both the measurement covariance and the Jacobian determinant values of the motion. A 2D PET simulation demonstrates the theoretical results.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/85889/1/Fessler240.pd

    Assessment of Left Ventricular Function in Cardiac MSCT Imaging by a 4D Hierarchical Surface-Volume Matching Process

    Get PDF
    Multislice computed tomography (MSCT) scanners offer new perspectives for cardiac kinetics evaluation with 4D dynamic sequences of high contrast and spatiotemporal resolutions. A new method is proposed for cardiac motion extraction in multislice CT. Based on a 4D hierarchical surface-volume matching process, it provides the detection of the heart left cavities along the acquired sequence and the estimation of their 3D surface velocity fields. A Markov random field model is defined to find, according to topological descriptors, the best correspondences between a 3D mesh describing the left endocardium at one time and the 3D acquired volume at the following time. The global optimization of the correspondences is realized with a multiresolution process. Results obtained on simulated and real data show the capabilities to extract clinically relevant global and local motion parameters and highlight new perspectives in cardiac computed tomography imaging

    Improving the Accuracy of CT-derived Attenuation Correction in Respiratory-Gated PET/CT Imaging

    Get PDF
    The effect of respiratory motion on attenuation correction in Fludeoxyglucose (18F) positron emission tomography (FDG-PET) was investigated. Improvements to the accuracy of computed tomography (CT) derived attenuation correction were obtained through the alignment of the attenuation map to each emission image in a respiratory gated PET scan. Attenuation misalignment leads to artefacts in the reconstructed PET image and several methods were devised for evaluating the attenuation inaccuracies caused by this. These methods of evaluation were extended to finding the frame in the respiratory gated PET which best matched the CT. This frame was then used as a reference frame in mono-modality compensation for misalignment. Attenuation correction was found to affect the quantification of tumour volumes; thus a regional analysis was used to evaluate the impact of mismatch and the benefits of compensating for misalignment. Deformable image registration was used to compensate for misalignment, however, there were inaccuracies caused by the poor signal-to-noise ratio (SNR) in PET images. Two models were developed that were robust to a poor SNR allowing for the estimation of deformation from very noisy images. Firstly, a cross population model was developed by statistically analysing the respiratory motion in 10 4DCT scans. Secondly, a 1D model of respiration was developed based on the physiological function of respiration. The 1D approach correctly modelled the expansion and contraction of the lungs and the differences in the compressibility of lungs and surrounding tissues. Several additional models were considered but were ruled out based on their poor goodness of fit to 4DCT scans. Approaches to evaluating the developed models were also used to assist with optimising for the most accurate attenuation correction. It was found that the multimodality registration of the CT image to the PET image was the most accurate approach to compensating for attenuation correction mismatch. Mono-modality image registration was found to be the least accurate approach, however, incorporating a motion model improved the accuracy of image registration. The significance of these findings is twofold. Firstly, it was found that motion models are required to improve the accuracy in compensating for attenuation correction mismatch and secondly, a validation method was found for comparing approaches to compensating for attenuation mismatch

    Improving the Accuracy of CT-derived Attenuation Correction in Respiratory-Gated PET/CT Imaging

    Get PDF
    The effect of respiratory motion on attenuation correction in Fludeoxyglucose (18F) positron emission tomography (FDG-PET) was investigated. Improvements to the accuracy of computed tomography (CT) derived attenuation correction were obtained through the alignment of the attenuation map to each emission image in a respiratory gated PET scan. Attenuation misalignment leads to artefacts in the reconstructed PET image and several methods were devised for evaluating the attenuation inaccuracies caused by this. These methods of evaluation were extended to finding the frame in the respiratory gated PET which best matched the CT. This frame was then used as a reference frame in mono-modality compensation for misalignment. Attenuation correction was found to affect the quantification of tumour volumes; thus a regional analysis was used to evaluate the impact of mismatch and the benefits of compensating for misalignment. Deformable image registration was used to compensate for misalignment, however, there were inaccuracies caused by the poor signal-to-noise ratio (SNR) in PET images. Two models were developed that were robust to a poor SNR allowing for the estimation of deformation from very noisy images. Firstly, a cross population model was developed by statistically analysing the respiratory motion in 10 4DCT scans. Secondly, a 1D model of respiration was developed based on the physiological function of respiration. The 1D approach correctly modelled the expansion and contraction of the lungs and the differences in the compressibility of lungs and surrounding tissues. Several additional models were considered but were ruled out based on their poor goodness of fit to 4DCT scans. Approaches to evaluating the developed models were also used to assist with optimising for the most accurate attenuation correction. It was found that the multimodality registration of the CT image to the PET image was the most accurate approach to compensating for attenuation correction mismatch. Mono-modality image registration was found to be the least accurate approach, however, incorporating a motion model improved the accuracy of image registration. The significance of these findings is twofold. Firstly, it was found that motion models are required to improve the accuracy in compensating for attenuation correction mismatch and secondly, a validation method was found for comparing approaches to compensating for attenuation mismatch
    corecore