39 research outputs found

    Estimation of heart rate from foot worn photoplethysmography sensors during fast bike exercise

    Get PDF
    This paper presents a new method for estimating the average heart rate from a foot/ankle worn photoplethysmography (PPG) sensor during fast bike activity. Placing the PPG sensor on the lower half of the body allows more energy to be collected from energy harvesting in order to give a power autonomous sensor node, but comes at the cost of introducing significant motion interference into the PPG trace. We present a normalised least mean square adaptive filter and short-time Fourier transform based algorithm for estimating heart rate in the presence of this motion contamination. Results from 8 subjects show the new algorithm has an average error of 9 beats-per-minute when compared to an ECG gold standard

    Estimating pulse wave velocity using mobile phone sensors

    Get PDF
    Pulse wave velocity has been recognised as an important physiological phenomenon in the human body, and its measurement can aid in the diagnosis and treatment of chronic diseases. It is the gold standard for arterial stiffness measurements, and it also shares a positive relationship with blood pressure and heart rate. There exist several methods and devices via which it can be measured. However, commercially available devices are more geared towards working health professionals and hospital settings, requiring a significant monetary investment and specialised training to operate correctly. Furthermore, most of these devices are not portable and thus generally not feasible for private home use by the common individual. Given its usefulness as an indicator of certain physiological functions, it is expected that having a more portable, affordable, and simple to use solution would present many benefits to both end users and healthcare professionals alike. This study investigated and developed a working model for a new approach to pulse wave velocity measurement, based on existing methods, but making use of novel equipment. The proposed approach made use of a mobile phone video camera and audio input in conjunction with a Doppler ultrasound probe. The underlying principle is that of a two-point measurement system utilising photoplethysmography and electrocardiogram signals, an existing method commonly found in many studies. Data was collected using the mobile phone sensors and processed and analysed on a computer. A custom program was developed in MATLAB that computed pulse wave velocity given the audio and video signals and a measurement of the distance between the two data acquisition sites. Results were compared to the findings of previous studies in the field, and showed similar trends. As the power of mobile smartphones grows, there exists potential for the work and methods presented here to be fully developed into a standalone mobile application, which would bring forth real benefits of portability and cost-effectiveness to the prospective user base

    Deep Learning Algorithms for Time Series Analysis of Cardiovascular Monitoring Systems

    Get PDF
    This thesis investigates and develops methods to enable ubiquitous monitoring of the most examined cardiovascular signs, blood pressure, and heart rate. Their continuous measurement can help improve health outcomes, such as the detection of hypertension, heart attack, or stroke, which are the leading causes of death and disability. Recent research into wearable blood pressure monitors sought predominately to utilise a hypothesised relationship with pulse transit time, relying on quasiperiodic pulse event extractions from photoplethysmography local signal characteristics and often used only a fraction of typically bivariate time series. This limitation has been addressed in this thesis by developing methods to acquire and utilise fused multivariate time series without the need for manual feature engineering by leveraging recent advances in data science and deep learning methods that showed great data analysis potential in other domains

    An Approach for Deliberate Non-Compliance Detection during Opioid Abuse Surveillance by a Wearable Biosensor

    Get PDF
    Wearable sensors can be used to monitor opioid use and other key behaviors of interest, and to prompt interventions that promote behavioral change. The effectiveness of such systems is threatened by the potential of a subject\u27s deliberate non-compliance (DNC) to the monitoring. We define deliberate non-compliance as the process of giving one\u27s device to someone else when surveillance is on-going. The principal aim of this thesis is to develop an approach to leverage movement and cardiac features from a wearable sensor to detect such deliberate non-compliance by individuals under surveillance for opioid use. Data from 11 participants who presented to the Emergency Department following an opioid overdose was analyzed. Using a personalized machine learning classifier (model), we evaluated if a snippet of blood volume pulse (BVP) and accelerometer data received is coming from the expected participant or an alternate person. Analysis of our classier shows the viability of this approach, as we were able to detect DNC (or compliance) with over 90% accuracy within 3 seconds of its occurrence

    Generative Adversarial Network for Photoplethysmography Reconstruction

    Get PDF
    Photoplethysmography (PPG) is an optical measurement method for blood pulse wave monitoring. The method has been widely applied in both clinical and wearable devices to collect physiological parameters, such as heart rate (HR) and heart rate variability (HRV). Unfortunately, the PPG signals are very vulnerable to motion artifacts, caused by inevitable movements of human users. To obtain reliable results from PPG-based monitoring, methods to denoise the PPG signals are necessary. Methods proposed in the literature, including signal decomposition, time-series analysis, and deep-learning based methods, reduce the effect of noise in PPG signals. However, their performance is insufficient for low signal-to-noise ratio PPG signals, or limited to noise from certain types of activities. Therefore, the aim of this study is to develop a method to remove the motion artifacts and reconstruct noisy PPG signals without any prior knowledge about the noise. In this thesis, a deep convolutional generative adversarial network (DC-GAN) based method is proposed to reconstruct the PPG signals corrupted by real-world motion artifacts. The proposed method leverages the temporal information from the distorted signal and its preceding data points to obtain the clean PPG signal. A GAN-based model is trained to generate succeeding clean PPG signals by previous data points. A sliding window moving at a fixed step on the noisy signal is used to select and update the input for the trained model by the information within the noisy signal. A PPG dataset collected by smartwatches in a health monitoring study is used to train, validate, and test the method in this study. A noisy dataset generated with real-world motion artifacts of different noise levels and lengths is used to evaluate the proposed and baseline methods. Three state-of-the-art PPG reconstruction methods are compared with our method. Two metrics, including maximum peak-to-peak error and RMSSD error, are extracted from the original and reconstructed signals to estimate the reconstruction error for HR and HRV. Our method outperforms state-of-the-art methods with the lowest values of the two evaluation matrices at all noise levels and lengths. The proposed method achieves 0.689, 1.352 and 1.821 seconds of maximum peak-to-peak errors for 5-second, 10-second, and 15-second noise at the highest noise level, respectively, and achieves 0.021, 0.048 and 0.067 seconds of RMSSD errors for the same noise cases. Consequently, our method performs the best in reconstructing distorted PPG signals and provides reliable estimation for both HR and HRV

    Unified Quality-Aware Compression and Pulse-Respiration Rates Estimation Framework for Reducing Energy Consumption and False Alarms of Wearable PPG Monitoring Devices

    Get PDF
    Due to the high demands of tiny, compact, lightweight, and low-cost photoplethysmogram (PPG) monitoring devices, these devices are resource-constrained including limited battery power. Consequently, it highly demands frequent charge or battery replacement in the case of continuous PPG sensing and transmission. Further, PPG signals are often severely corrupted under ambulatory and exercise recording conditions, leading to frequent false alarms. In this paper, we propose a unified quality-aware compression and pulse-respiration rates estimation framework for reducing energy consumption and false alarms of wearable and edge PPG monitoring devices by exploring predictive coding techniques for jointly performing signal quality assessment (SQA), data compression and pulse rate (PR) and respiration rate (RR) estimation without the use of different domains of signal processing techniques that can be achieved by using the features extracted from the smoothed prediction error signal. By using the five standard PPG databases, the performance of the proposed unified framework is evaluated in terms of compression ratio (CR), mean absolute error (MAE), false alarm reduction rate (FARR), processing time (PT) and energy saving (ES). The compression, PR, RR estimation, and SQA results are compared with the existing methods and results of uncompressed PPG signals with sampling rates of 125 Hz and 25 Hz. The proposed unified qualityaware framework achieves an average CR of 4%, SQA (Se of 92.00%, FARR of 84.87%), PR (MAE: 0.46 ±1.20) and RR (MAE: 1.75 (0.65-4.45), PT (sec) of 15.34 ±0.01) and ES of 70.28% which outperforms the results of uncompressed PPG signal with a sampling rate of 125 Hz. Arduino Due computing platformbased implementation demonstrates the real-time feasibility of the proposed unified quality-aware PRRR estimation and data compression and transmission framework on the limited computational resources. Thus, it has great potential in improving energy-efficiency and trustworthiness of wearable and edge PPG monitoring devices.publishedVersio

    Multi-sensor Framework for Heart Rate and Blood Oxygen Saturation Monitoring of Human Body

    Get PDF
    Cardiovascular diseases have been the cause of death for millions of people. Some of these deaths could be avoided if there was a signi cant increase of diagnosis for the detection of such diseases. This diagnosis, in turn, could be realized with the increased availability of robust and low-cost medical diagnostic devices. Integrated technology sensors available on wearable devices have been commonly used to read physiological data in users (patients). Particularly the pulse oximetry sensors, o ers a unique, non-invasive method that can be used to detect the severity of such diseases. This evaluation of the physical condition of the patient for certain diseases is possible due to non-invasive measurement through photoplethysmography, which allows the extraction of heart rate and oxygen saturation in the blood. Since some diseases diagnoses require simultaneous monitoring of blood oxygen saturation values at various sites in the body, a project has been developed to perform such reading of physiological data. This thesis presents the development of a systems platform based on the use of multiple pulse oximetry sensors connected to an application developed for a mobile device though a wireless connection. The purpose of this platform is to provide an easy-to-read experience of health data that can be analyzed to diagnose cardiovascular disease symptoms, aiding in an early diagnosis. The complete structure as well as the aspects of the analysis and implementation of the systems related to the proposed architecture are described in this dissertation

    Data-driven methods for analyzing ballistocardiograms in longitudinal cardiovascular monitoring

    Get PDF
    Cardiovascular disease (CVD) is the leading cause of death in the US; about 48% of American adults have one or more types of CVD. The importance of continuous monitoring of the older population, for early detection of changes in health conditions, has been shown in the literature, as the key to a successful clinical intervention. We have been investigating environmentally-embedded in-home networks of non-invasive sensing modalities. This dissertation concentrates on the signal processing techniques required for the robust extraction of morphological features from the ballistocardiographs (BCG), and machine learning approaches to utilize these features in non-invasive monitoring of cardiovascular conditions. At first, enhancements in the time domain detection of the cardiac cycle are addressed due to its importance in the estimation of heart rate variability (HRV) and sleep stages. The proposed enhancements in the energy-based algorithm for BCG beat detection have shown at least 50% improvement in the root mean square error (RMSE) of the beat to beat heart rate estimations compared to the reference estimations from the electrocardiogram (ECG) R to R intervals. These results are still subject to some errors, primarily due to the contamination of noise and motion artifacts caused by floor vibration, unconstrained subject movements, or even the respiratory activities. Aging, diseases, breathing, and sleep disorders can also affect the quality of estimation as they slightly modify the morphology of the BCG waveform.Includes bibliographical reference

    Characterizing the Noise Associated with Sensor Placement and Motion Artifacts and Overcoming its Effects for Body-worn Physiological Sensors

    Get PDF
    Wearable sensors for continuous physiological monitoring have the potential to change the paradigm for healthcare by providing information in scenarios not covered by the existing clinical model. One key challenge for wearable physiological sensors is that their signal-to-noise ratios are low compared to those of their medical grade counterparts in hospitals. Two primary sources of noise are the sensor-skin contact interface and motion artifacts due to the user’s daily activities. These are challenging problems because the initial sensor placement by the user may not be ideal, the skin conditions can change over time, and the nature of motion artifacts is not predictable. The objective of this research is twofold. The first is to design sensors with reconfigurable contact to mitigate the effects of misplaced sensors or changing skin conditions. The second is to leverage signal processing techniques for accurate physiological parameter estimation despite the presence of motion artifacts. In this research, the sensor contact problem was specifically addressed for dry-contact electroencephalography (EEG). The proposed novel extension to a popular existing EEG electrode design enabled reconfigurable contact to adjust to variations in sensor placement and skin conditions over time. Experimental results on human subjects showed that reconfiguration of contact can reduce the noise in collected EEG signals without the need for manual intervention. To address the motion artifact problem, a particle filter based approach was employed to track the heart rate in cardiac signals affected by the movements of the user. The algorithm was tested on cardiac signals from human subjects running on a treadmill and showed good performance in accurately tracking heart rate. Moreover, the proposed algorithm enables fusion of multiple modalities and is also computationally more efficient compared to other contemporary approaches
    corecore