491 research outputs found

    Design and control of next-generation uavs for effectively interacting with environments

    Get PDF
    In this dissertation, the design and control of a novel multirotor for aerial manipulation is studied, with the aim of endowing the aerial vehicle with more degrees of freedom of motion and stability when interacting with the environments. Firstly, it presents an energy-efficient adaptive robust tracking control method for a class of fully actuated, thrust vectoring unmanned aerial vehicles (UAVs) with parametric uncertainties including unknown moment of inertia, mass and center of mass, which would occur in aerial maneuvering and manipulation. The effectiveness of this method is demonstrated through simulation. Secondly, a humanoid robot arm is adopted to serve as a 6-degree-of-freedom (DOF) automated flight testing platform for emulating the free flight environment of UAVs while ensuring safety. Another novel multirotor in a tilt-rotor architecture is studied and tested for coping with parametric uncertainties in aerial maneuvering and manipulation. Two pairs of rotors are mounted on two independently-controlled tilting arms placed at two sides of the vehicle in a H configuration to enhance its maneuverability and stability through an adaptive robust control method. In addition, an impedance control algorithm is deployed in the out loop that modifies the trajectory to achieve a compliant behavior in the end-effector space for aerial drilling and screwing tasks

    Energy-efficient local path planning of a self-guided vehicle by considering the load position

    Get PDF
    The local path planning, as one of the navigation stages, plays a significant role in the energy consumption of Self-Guided Vehicles (SGV). Since SGV must operate for several hours on a single battery charge to transport loads, its energy consumption is a critical issue. Therefore, this article puts forward an approach for boosting the energy efficiency of the local path planning stage using load position. Unlike other similar works which solely use robots’ kinematic and kinetic constraints to develop energy-efficient local path planners, this article considers the effect of load position on SGV’s dynamic. In this regard, first, the kinetic model of the differential drive SGV is developed to consider the change of SGV’s Center of Mass (CoM) affected by load properties. Second, machine learning methods are used to create two learning models for online estimation of the position of CoM (PoCoM) and prediction of required energy of sample trajectories. Hence, the generated SGV’s kinetic model is used to train the learning models. Finally, estimated parameters are employed to add a new constraint to extend the cost function of the local path planner. The outcomes of the study show that the proposed planner generates smoother and shorter paths to pass obstacles and corridors than a general one. Thus, SGV’s energy consumption decreases by considering the load effect

    Virtual Structure Based Formation Tracking of Multiple Wheeled Mobile Robots: An Optimization Perspective

    Get PDF
    Today, with the increasing development of science and technology, many systems need to be optimized to find the optimal solution of the system. this kind of problem is also called optimization problem. Especially in the formation problem of multi-wheeled mobile robots, the optimization algorithm can help us to find the optimal solution of the formation problem. In this paper, the formation problem of multi-wheeled mobile robots is studied from the point of view of optimization. In order to reduce the complexity of the formation problem, we first put the robots with the same requirements into a group. Then, by using the virtual structure method, the formation problem is reduced to a virtual WMR trajectory tracking problem with placeholders, which describes the expected position of each WMR formation. By using placeholders, you can get the desired track for each WMR. In addition, in order to avoid the collision between multiple WMR in the group, we add an attraction to the trajectory tracking method. Because MWMR in the same team have different attractions, collisions can be easily avoided. Through simulation analysis, it is proved that the optimization model is reasonable and correct. In the last part, the limitations of this model and corresponding suggestions are given

    Feasible, Robust and Reliable Automation and Control for Autonomous Systems

    Get PDF
    The Special Issue book focuses on highlighting current research and developments in the automation and control field for autonomous systems as well as showcasing state-of-the-art control strategy approaches for autonomous platforms. The book is co-edited by distinguished international control system experts currently based in Sweden, the United States of America, and the United Kingdom, with contributions from reputable researchers from China, Austria, France, the United States of America, Poland, and Hungary, among many others. The editors believe the ten articles published within this Special Issue will be highly appealing to control-systems-related researchers in applications typified in the fields of ground, aerial, maritime vehicles, and robotics as well as industrial audiences

    Mobile Robots Navigation

    Get PDF
    Mobile robots navigation includes different interrelated activities: (i) perception, as obtaining and interpreting sensory information; (ii) exploration, as the strategy that guides the robot to select the next direction to go; (iii) mapping, involving the construction of a spatial representation by using the sensory information perceived; (iv) localization, as the strategy to estimate the robot position within the spatial map; (v) path planning, as the strategy to find a path towards a goal location being optimal or not; and (vi) path execution, where motor actions are determined and adapted to environmental changes. The book addresses those activities by integrating results from the research work of several authors all over the world. Research cases are documented in 32 chapters organized within 7 categories next described

    Climbing and Walking Robots

    Get PDF
    With the advancement of technology, new exciting approaches enable us to render mobile robotic systems more versatile, robust and cost-efficient. Some researchers combine climbing and walking techniques with a modular approach, a reconfigurable approach, or a swarm approach to realize novel prototypes as flexible mobile robotic platforms featuring all necessary locomotion capabilities. The purpose of this book is to provide an overview of the latest wide-range achievements in climbing and walking robotic technology to researchers, scientists, and engineers throughout the world. Different aspects including control simulation, locomotion realization, methodology, and system integration are presented from the scientific and from the technical point of view. This book consists of two main parts, one dealing with walking robots, the second with climbing robots. The content is also grouped by theoretical research and applicative realization. Every chapter offers a considerable amount of interesting and useful information

    Climbing and Walking Robots

    Get PDF
    Nowadays robotics is one of the most dynamic fields of scientific researches. The shift of robotics researches from manufacturing to services applications is clear. During the last decades interest in studying climbing and walking robots has been increased. This increasing interest has been in many areas that most important ones of them are: mechanics, electronics, medical engineering, cybernetics, controls, and computers. Today’s climbing and walking robots are a combination of manipulative, perceptive, communicative, and cognitive abilities and they are capable of performing many tasks in industrial and non- industrial environments. Surveillance, planetary exploration, emergence rescue operations, reconnaissance, petrochemical applications, construction, entertainment, personal services, intervention in severe environments, transportation, medical and etc are some applications from a very diverse application fields of climbing and walking robots. By great progress in this area of robotics it is anticipated that next generation climbing and walking robots will enhance lives and will change the way the human works, thinks and makes decisions. This book presents the state of the art achievments, recent developments, applications and future challenges of climbing and walking robots. These are presented in 24 chapters by authors throughtot the world The book serves as a reference especially for the researchers who are interested in mobile robots. It also is useful for industrial engineers and graduate students in advanced study

    Path planning algorithms for autonomous navigation of a non-holonomic robot in unstructured environments

    Get PDF
    openPath planning is a crucial aspect of autonomous robot navigation, enabling robots to efficiently and safely navigate through complex environments. This thesis focuses on autonomous navigation for robots in dynamic and uncertain environments. In particular, the project aims to analyze the localization and path planning problems. A fundamental review of the existing literature on path planning algorithms has been carried on. Various factors affecting path planning, such as sensor data fusion, map representation, and motion constraints, are also analyzed. Thanks to the collaboration with E80 Group S.p.A., the project has been developed using ROS (Robot Operating System) on a Clearpath Dingo-O, an indoor mobile robot. To address the challenges posed by unstructured and dynamic environments, ROS follows a combined approach of using a global planner and a local planner. The global planner generates a high-level path, considering the overall environment, while the local planner handles real-time adjustments to avoid moving obstacles and optimize the trajectory. This thesis describes the role of the global planner in a ROS-framework. Performance benchmarking of traditional algorithms like Dijkstra and A*, as well as other techniques, is fundamental in order to understand the limits of these methods. In the end, the Hybrid A* algorithm is introduced as a promising approach for addressing the issues of unstructured environments for autonomous navigation of a non-holonomic robot. The core concepts and implementation details of the algorithm are discussed, emphasizing its ability to efficiently explore continuous state spaces and generate drivable paths.The effectiveness of the proposed path planning algorithms is evaluated through extensive simulations and real-world experiments using the mobile platform. Performance metrics such as path length, execution time, and collision avoidance are analyzed to assess the efficiency and reliability of the algorithms.Path planning is a crucial aspect of autonomous robot navigation, enabling robots to efficiently and safely navigate through complex environments. This thesis focuses on autonomous navigation for robots in dynamic and uncertain environments. In particular, the project aims to analyze the localization and path planning problems. A fundamental review of the existing literature on path planning algorithms has been carried on. Various factors affecting path planning, such as sensor data fusion, map representation, and motion constraints, are also analyzed. Thanks to the collaboration with E80 Group S.p.A., the project has been developed using ROS (Robot Operating System) on a Clearpath Dingo-O, an indoor mobile robot. To address the challenges posed by unstructured and dynamic environments, ROS follows a combined approach of using a global planner and a local planner. The global planner generates a high-level path, considering the overall environment, while the local planner handles real-time adjustments to avoid moving obstacles and optimize the trajectory. This thesis describes the role of the global planner in a ROS-framework. Performance benchmarking of traditional algorithms like Dijkstra and A*, as well as other techniques, is fundamental in order to understand the limits of these methods. In the end, the Hybrid A* algorithm is introduced as a promising approach for addressing the issues of unstructured environments for autonomous navigation of a non-holonomic robot. The core concepts and implementation details of the algorithm are discussed, emphasizing its ability to efficiently explore continuous state spaces and generate drivable paths.The effectiveness of the proposed path planning algorithms is evaluated through extensive simulations and real-world experiments using the mobile platform. Performance metrics such as path length, execution time, and collision avoidance are analyzed to assess the efficiency and reliability of the algorithms

    Recent Advances in Multi Robot Systems

    Get PDF
    To design a team of robots which is able to perform given tasks is a great concern of many members of robotics community. There are many problems left to be solved in order to have the fully functional robot team. Robotics community is trying hard to solve such problems (navigation, task allocation, communication, adaptation, control, ...). This book represents the contributions of the top researchers in this field and will serve as a valuable tool for professionals in this interdisciplinary field. It is focused on the challenging issues of team architectures, vehicle learning and adaptation, heterogeneous group control and cooperation, task selection, dynamic autonomy, mixed initiative, and human and robot team interaction. The book consists of 16 chapters introducing both basic research and advanced developments. Topics covered include kinematics, dynamic analysis, accuracy, optimization design, modelling, simulation and control of multi robot systems

    Proceedings of the 9th Conference on Autonomous Robot Systems and Competitions

    Get PDF
    Welcome to ROBOTICA 2009. This is the 9th edition of the conference on Autonomous Robot Systems and Competitions, the third time with IEEE‐Robotics and Automation Society Technical Co‐Sponsorship. Previous editions were held since 2001 in Guimarães, Aveiro, Porto, Lisboa, Coimbra and Algarve. ROBOTICA 2009 is held on the 7th May, 2009, in Castelo Branco , Portugal. ROBOTICA has received 32 paper submissions, from 10 countries, in South America, Asia and Europe. To evaluate each submission, three reviews by paper were performed by the international program committee. 23 papers were published in the proceedings and presented at the conference. Of these, 14 papers were selected for oral presentation and 9 papers were selected for poster presentation. The global acceptance ratio was 72%. After the conference, eighth papers will be published in the Portuguese journal Robótica, and the best student paper will be published in IEEE Multidisciplinary Engineering Education Magazine. Three prizes will be awarded in the conference for: the best conference paper, the best student paper and the best presentation. The last two, sponsored by the IEEE Education Society ‐ Student Activities Committee. We would like to express our thanks to all participants. First of all to the authors, whose quality work is the essence of this conference. Next, to all the members of the international program committee and reviewers, who helped us with their expertise and valuable time. We would also like to deeply thank the invited speaker, Jean Paul Laumond, LAAS‐CNRS France, for their excellent contribution in the field of humanoid robots. Finally, a word of appreciation for the hard work of the secretariat and volunteers. Our deep gratitude goes to the Scientific Organisations that kindly agreed to sponsor the Conference, and made it come true. We look forward to seeing more results of R&D work on Robotics at ROBOTICA 2010, somewhere in Portugal
    • 

    corecore