331 research outputs found

    Transit Preferential Treatments at Signalized Intersections: Person-based Evaluation and Real-Time Signal Control

    Get PDF
    Efficient public transportation has the potential to relieve traffic congestion and improve overall transportation system performance. In order to improve transit services, Transit Preferential Treatments (TPT) are often deployed to give transit vehicles priority over other vehicles at an intersection or along a corridor. Examples of such treatments are exclusive bus lanes, queue jumper lanes, and signal priority strategies. The objective of this study is threefold: 1) perform a person-based evaluation of alternative TPTs when considered individually and in combination, 2) develop a bus travel time prediction model along a signalized arterial, and 3) develop a real-time signal control system, which minimizes total person delay at an isolated intersection accounting for stochasticity in transit vehicle arrivals. This study first develops analytical models to estimate person delay and person discharge flow when various spatial and time TPTs are present at signalized intersections with and without near-side bus stops. This part of the research has contributed to the modeling of traffic along signalized arterials by improving the previous models to evaluate various TPT strategies with and without nearside bus stops. Next, a robust method to predict bus travel time along a signalized arterial is developed. This part of the research contributes to the bus travel time prediction models by estimating the status of traffic signals using automated vehicle location (AVL) data. The model decomposes bus travel time along signalized arterials and infers trajectories of the transit vehicles. Finally, the real-time signal control system is developed to provide priority to transit vehicles by assigning weights to transit vehicle delays based on their passenger occupancies as part of the optimization objective function. The system optimizes the movements by minimizing total person delay at the intersection. The system estimates bus arrival time at the intersection stopline and uses the developed analyitical models in the first part of the research to evaluate the person delay measure. This part of the research contributes to the real-time signal control systems by providing a priority window to account for the stochasticity in bus arrival times

    Modelação interpretativa da segurança e emissões em corredores de rotundas e semáforos

    Get PDF
    Scientific research has demonstrated that the operational, environmental and safety performance for pedestrians depend on the geometric and traffic stream characteristics of the roundabout. However, the implementation of roundabouts may result in a trade-off among capacity, environmental, and safety variables. Also, little is known about the potential impacts for traffic from the use of functionally interdependent roundabouts in series along corridors. Thus, this doctoral thesis stresses the importance of understanding in how roundabout corridors affect traffic performance, vehicular emissions and safety for vulnerable users as pedestrians. The development of a methodology capable of integrating corridor’s geometric and operational elements is a contribution of this work. The main objectives of the thesis are as follows: 1) to analyze the effect of corridor’s design features in the acceleration patterns and emissions; 2) to understand the differences in the spatial distribution of emissions between roundabouts in isolation and along corridors; 3) to compare corridors with different forms of intersections such as conventional roundabouts, turbo-roundabouts, traffic lights and stop-controlled intersections; and 4) to design corridor-specific characteristics to optimize vehicle delay, and global (carbon dioxide – CO2) and local (carbon monoxide – CO, nitrogen oxides – NOX and hydrocarbons – HC) pollutant emissions. Vehicle dynamics along with traffic and pedestrian flow data were collected from 12 corridors with conventional roundabouts located in Portugal, Spain and in the United States, 3 turbo-roundabout corridors in the Netherlands, and 1 mixed roundabout/traffic-lights/stop-controlled corridor in Portugal. Data for approximately 2,000 km of road coverage over the course of 50 h have been collected. Subsequently, a microscopic platform of traffic (VISSIM), emissions (Vehicle Specific Power – VSP) and safety (Surrogate Safety Assessment Model – SSAM) was introduced to faithful reproduce site-specific operations and to examine different alternative scenarios. The main research findings showed that the spacing between intersections influenced vehicles acceleration-deceleration patterns and emissions. In contrast, the deflection angle at the entrances (element that impacts emissions on isolated roundabouts) impacted slightly on the spatial distribution of emissions. It was also found that the optimal crosswalk locations along mid-block sections in roundabout corridor was generally controlled by spacing, especially in the case of short spacing between intersections (< 200 m). The implementation of turbo-roundabout in series along corridors increased emissions compared to conventional two-lane roundabout corridors (1-5%, depending on the pollutant). By changing the location of a roundabout or turbo-roundabout to increase spacing in relation to upstream/downstream intersection resulted in an improvement of corridor emissions. Under conditions of high through traffic and unbalanced traffic flows between main roads and minor roads, vehicles along roundabout corridors produced fewer emissions (~5%) than did vehicles along signalized corridors, but they emitted more gases (~12%) compared to a corridor with stop-controlled intersections. This research contributed to the current state-of-art by proving a full comprehension about the operational and geometric benefits and limitations of roundabout corridors. It also established correlations between geometric variable of corridors (spacing), crosswalk locations or traffic streams, and delay, and CO2, CO, NOX or HC variables. With this research, it has been demonstrated that the implementation of a given intersection form within a corridor focused on minimizing CO2 may not be translated to other variables such as CO or NOX. Therefore, the develop methodology is a decision supporting tool capable of assessing and selecting suitable traffic controls according the site-specific needs.Estudos anteriores demonstram que os desempenhos operacional, ambiental e ao nível da segurança para os peões de uma rotunda dependem das suas características geométricas e dos fluxos de tráfego e de peões. Porém, a implementação de uma rotunda pode traduzir-se numa avaliação de compromisso entre as variáveis da capacidade, emissões de poluentes e segurança. Para além disso, a informação relativa às potencialidades de rotundas interdependentes ao longo de corredores é diminuta. Assim, esta tese de doutoramento centra-se na compreensão dos impactos no desempenho do tráfego, emissões e segurança dos peões inerentes ao funcionamento de corredores de rotundas. Uma das contribuições deste trabalho é o desenvolvimento de uma metodologia capaz de avaliar as características geométricas e operacionais dos corredores de forma integrada. Os principais objetivos desta tese são: 1) analisar o impacto dos elementos geométricos dos corredores de rotundas em termos dos perfis de aceleração e das emissões; 2) investigar as principais diferenças na distribuição espacial das emissões entre rotundas isoladas e em corredores; 3) comparar os desempenhos operacional e ambiental de corredores com diferentes tipos de interseções tais como rotundas convencionais, turbo-rotundas, cruzamentos semaforizados e interseções prioritárias; e 4) dimensionar um corredor de modo a otimizar o atraso dos veículos, e emissões de poluentes globais (dióxido de carbono – CO2) e locais (monóxido de carbono – CO, óxidos de azoto – NOx e hidrocarbonetos – HC). O trabalho de monitorização experimental consistiu na recolha de dados da dinâmica do veículo, e volumes de tráfego e pedonais. Para tal, foram selecionados 12 corredores com rotundas convencionais em Portugal, Espanha e Estados Unidos da América, 3 corredores com turbo-rotundas na Holanda e ainda um corredor misto com rotundas, sinais luminosos e interseções prioritárias em Portugal. No total foram recolhidos aproximadamente 2000 km de dados da dinâmica do veículo, num total de 50 h. Foi utilizada uma plataforma de modelação microscópica de tráfego (VISSIM), emissões (Vehicle Specific Power – VSP) e segurança (Surrogate Safety Assessment Model – SSAM) de modo a replicar as condições de tráfego locais e avaliar cenários alternativos. Os resultados mostraram que o espaçamento entre interseções teve um impacto significativo nos perfis de aceleração e emissões. No entanto, tal não se verificou para o ângulo de deflexão de entrada (elemento fulcral nos níveis de emissões em rotundas isoladas), nomeadamente nos casos em que as rotundas adjacentes estavam próximas (< 200 m). A implementação de corredores de turbo-rotundas conduziu ao aumento das emissões face a um corredor convencional de rotundas com duas vias (1-5%, dependendo do poluente). A relocalização de uma rotunda ou turbo-rotunda no interior do corredor, de modo a aumentar o espaçamento em relação a uma interseção a jusante e/ou a montante, levou a uma melhoria das emissões do corredor. Conclui-se também que em condições de elevado tráfego de atravessamento e não uniformemente distribuído entre as vias principais e secundárias, os veículos ao longo de um corredor com rotundas produziram menos emissões (~5%) face a um corredor com semáforos, mas emitiram mais gases (~12%) comparativamente a um corredor de interseções prioritárias. Esta investigação contribuiu para o estado de arte através da análise detalhada dos benefícios e limitações dos corredores de rotundas tanto ao nível geométrico como ao nível operacional. Adicionalmente, estabeleceram-se várias correlações entre variáveis geométricas do corredor (espaçamento), localização das passadeiras e volume de tráfego, o atraso, e emissões de CO2, CO, NOX e HC. Demonstrou-se ainda que a implementação de uma interseção ao longo do corredor com a finalidade de minimizar o CO2 pode não resultar na melhoria de outras variáveis tais como o CO ou NOX. Esta metodologia serve como apoio à decisão e, portanto, permite avaliar o tipo de interseção mais adequado de acordo com as especificidades de cada local.Programa Doutoral em Engenharia Mecânic

    Development of Cell Transmission Model for Traffic Signal Coordination

    Get PDF
    This research aims to develop a macroscopic traffic model to estimate delay at signalized intersections by considering queue forming and dissipation in the presence of pre-timed signal. Cell Transmission Model (CTM) was set up with basic traffic input parameters to estimate delay and level of service (LOS) and the results are compared to computational analysis run by SIDRA (Signalized and Unsignalized Intersection Design and Research Aid) software. To optimize the traffic flow condition, traffic signal coordination is carried. It was found that optimized traffic signal setting reduces delay by 25.5% and 17% in Intersection A and Intersection B after a second run by CTM

    Start-up delay Estimation at Signalized Intersections: Impact of Left-Turn Phasing Sequences

    Full text link
    This paper aims to investigate the start-up delay at signalized intersections in Abu Dhabi (AD) city, UAE. Impact of external factors that may affect the start-up delay is examined including left turn phasing sequences (split/lead/lag), movement turning (through/left), intersection location (CBD/non-CBD) and day time (peak/off-peak). A new technique of data collection was applied based on the automate records of license plate of vehicles and a comparison with the traditional video recorded technique was carried out. Data covered 66 approaches of 36 signalized intersections. The analysis showed that overall estimated mean value of the start-up delay is 2.201 sec. with a standard deviation of 1.823 sec. The t-test shows significant statistical difference in start-up delay between observations at through and left movements, at CDB and non-CDB area and at split and lead/lag phasing. However, no significant differences were found between peak and off-peak periods and between split and lead phasing. In general, lead/lag phasing sequences not only improved the overall delay at signalized intersection but also improved the start-up delay.nbsp nbs

    Modeling and Analyzing the Impact of Advanced Technologies on Transit Performance Measures in Arterial Corridors

    Get PDF
    Transportation and transit agencies have implemented advanced technologies like transit signal priority (TSP) and Sydney Coordinated Adaptive Traffic System (SCATS) to reduce travel times and improve reliability. However, due to the lack of detailed empirical data, the joint impact of these factors and improvement strategies on bus travel time has not been studied at the stop-to-stop segment level. With the aim of assessing the performance of an existing TSP/SCATS system, this study had access to a unique set of high-resolution bus and traffic signal data. Novel algorithms and performance measures to measure TSP performance are proposed. Results indicate that a timely and effective TSP system requires a high degree of sophistication, monitoring and maintenance. Empirical data suggest that most TSP phase adjustments were granted in time (i.e., within a cycle) to buses that requested priority, but that only a small proportion resulted in reduced delay. In this study, many green extension phases were granted late, making them less effective than early green signal phases. Despite this, the TSP system did not increase delays for passengers and vehicles when side-street traffic is also considered
    • …
    corecore