2,883 research outputs found

    Dynamic Channel Allocation in Mobile Multimedia Networks Using Error Back Propagation and Hopfield Neural Network (EBP-HOP)

    Get PDF
    AbstractIn mobile multimedia communication systems, the limited bandwidth is an issue of serious concern. However for the better utilization of available resources in a network, channel allocation scheme plays a very important role to manage the available resources in each cell. Hence this issue should be managed to reduce the call blocking or dropping probabilities. This paper gives the new dynamic channel allocation scheme which is based on handoff calls and traffic mobility using hopfield neural network. It will improve the capacity of existing system. Hopfield method develops the new energy function that allocates channel not only for new call but also for handoff calls on the basis of traffic mobility information. Moreover, we have also examined the performance of traffic mobility with the help of error back propagation neural network model to enhance the overall Quality of Services (QoS) in terms of continuous service availability and intercell handoff calls. Our scheme decreases the call handoff dropping and blocking probability up to a better extent as compared to the other existing systems of static and dynamic channel allocation schemes

    Characterizing CDMA downlink feasibility via effective interference

    Get PDF
    This paper models and analyses downlink power assignment feasibility in Code Division Multiple Access (CDMA) mobile networks. By discretizing the area into small segments, the power requirements are characterized via a matrix representation that separates user and system characteristics. We obtain a closed-form analytical expression of the so-called Perron-Frobenius eigenvalue of that matrix, which provides a quick assessment of the feasibility of the power assignment for each distribution of calls over the segments. Although the obtained relation is non-linear, it basically provides an effective interference characterisation of downlink feasibility. Our results allow for a fast evaluation of outage and blocking probabilities, and enable a quick evaluation of feasibility that may be used for Call Acceptance Control. \u

    Interference Management Based on RT/nRT Traffic Classification for FFR-Aided Small Cell/Macrocell Heterogeneous Networks

    Full text link
    Cellular networks are constantly lagging in terms of the bandwidth needed to support the growing high data rate demands. The system needs to efficiently allocate its frequency spectrum such that the spectrum utilization can be maximized while ensuring the quality of service (QoS) level. Owing to the coexistence of different types of traffic (e.g., real-time (RT) and non-real-time (nRT)) and different types of networks (e.g., small cell and macrocell), ensuring the QoS level for different types of users becomes a challenging issue in wireless networks. Fractional frequency reuse (FFR) is an effective approach for increasing spectrum utilization and reducing interference effects in orthogonal frequency division multiple access networks. In this paper, we propose a new FFR scheme in which bandwidth allocation is based on RT/nRT traffic classification. We consider the coexistence of small cells and macrocells. After applying FFR technique in macrocells, the remaining frequency bands are efficiently allocated among the small cells overlaid by a macrocell. In our proposed scheme, total frequency-band allocations for different macrocells are decided on the basis of the traffic intensity. The transmitted power levels for different frequency bands are controlled based on the level of interference from a nearby frequency band. Frequency bands with a lower level of interference are assigned to the RT traffic to ensure a higher QoS level for the RT traffic. RT traffic calls in macrocell networks are also given a higher priority compared with nRT traffic calls to ensure the low call-blocking rate. Performance analyses show significant improvement under the proposed scheme compared with conventional FFR schemes

    A Comparative Study of Prioritized Handoff Schemes with Guard Channels in Wireless Cellular Networks

    Get PDF
    Mobility management has always been the main challenge in most mobile systems. It involves the management of network radio channel resource capacity for the purpose of achieving optimum quality of service (QoS) standard. In this era of wireless Personal Communication Networks such as Global System for Mobile Communication (GSM), Wireless Asynchronous Transfer Mode (WATM), Universal Mobile Telecommunication System (UMTS), there is a continuous increase in demand for network capacity. In order to accommodate the increased demand for network capacity (radio resource) over the wireless medium, cell sizes are reduced. As a result of such reduction in cell sizes, handoffs occur more frequently, and thereby result in increased volume of handoff related signaling. Therefore, a handoff scheme that can handle the increased signaling load while sustaining the standard QoS parameters is required.This work presents a comparative analysis of four popular developed handoff schemes. New call blocking probability, forced termination probability and throughput are the QoS parameters employed in comparing the four schemes. The four schemes are:RCS-GC,MRCS-GC, NCBS-GC, and APS-GC. NCBS-GChas the leased new call blocking probability while APS-GC has the worst. In terms of forced termination probability, MRCS-GC has the best result, whileRCS-GChas the worst scheme.MRCS-GC delivers the highest number of packets per second while APS-GC delivers the least. These performance metrics are computed by using the analytical expressions developed for these metrics in the considered models in a Microsoft Excel spreadsheet environment.http://dx.doi.org/10.4314/njt.v34i3.2

    Admission Control for Multiuser Communication Systems

    Get PDF
    During the last few years, broadband wireless communication has experienced very rapid growth in telecommunications industry. Hence, the performance analysis of such systems is one of the most important topics. However, accurate systems’ analysis requires first good modeling of the network traffic. Moreover, broadband wireless communication should achieve certain performance in order to satisfy the customers as well as the operators. Therefore, some call admission control techniques should be integrated with wireless networks in order to deny new users/services if accepting them will lead to degrade the network performance to less than the allowed threshold. This thesis mainly discusses the above two issues which can be summarized as follows. First issue is the traffic modeling of wireless communication. The performance analysis is discussed in terms of the quality of services (QoS) and also the grade of services (GoS). Different scenarios have been studies such as enhancing the GoS of handover users. The second issue is the admission control algorithms. Admission Control is part of radio resource management. The performance of admission control is affected by channel characteristics such as fading and interference. Hence, some wireless channel characteristics are introduced briefly. Seven different channel allocation schemes have been discussed and analyzed. Moreover, different admission control algorithms are analyzed such as power-based and multi-classes fuzzy-logic based. Some simulations analyses are given as well to show the system performance of different algorithms and scenarios.fi=Opinnäytetyö kokotekstinä PDF-muodossa.|en=Thesis fulltext in PDF format.|sv=Lärdomsprov tillgängligt som fulltext i PDF-format

    Efficient resource allocation and call admission control in high capacity wireless networks

    Get PDF
    Resource Allocation (RA) and Call Admission Control (CAC) in wireless networks are processes that control the allocation of the limited radio resources to mobile stations (MS) in order to maximize the utilization efficiency of radio resources and guarantee the Quality of Service (QoS) requirements of mobile users. In this dissertation, several distributed, adaptive and efficient RA/CAC schemes are proposed and analyzed, in order to improve the system utilization while maintaining the required QoS. Since the most salient feature of the mobile wireless network is that users are moving, a Mobility Based Channel Reservation (MBCR) scheme is proposed which takes the user mobility into consideration. The MBCR scheme is further developed into PMBBR scheme by using the user location information in the reservation making process. Through traffic composition analysis, the commonly used assumption is challenged in this dissertation, and a New Call Bounding (NCB) scheme, which uses the number of channels that are currently occupied by new calls as a decision variable for the CAC, is proposed. This dissertation also investigates the pricing as another dimension for RA/CAC. It is proven that for a given wireless network there exists a new call arrival rate which can maximize the total utility of users, while maintaining the required QoS. Based on this conclusion, an integrated pricing and CAC scheme is proposed to alleviate the system congestion

    Call Blocking Probabilities Reduction of Channel Assignment in Mobile Communication Systems

    Full text link
    In wireless mobile communication systems, the radio spectrum is limited resource. However, efficient use of such limited spectrum becomes more important when the two, three or more cells in the network become hot - spot. The use of available channels has been shown to improve the system capacity. The role of channel assignment scheme is to allocate channels to cells in such way as to minimize call-blocking probability or call dropping probability and also maximize the quality of service. Different channel allocation schemes are in use for mobile communication systems, of which the Hybrid channel allocation (HCA) a combination of Fixed and Dynamic channel allocation schemes (FCA and DCA respectively) was effective. In this paper, the performance of three different channel allocation schemes FCA, DCA and HCA will be analytically compared and the results are presented

    Channel Assignment in Multihop Cellular Networks

    Get PDF

    Adaptive Predictive Handoff Scheme with Channel Borrowing in Cellular Network

    Get PDF
    Previously, we presented an extension of predictive channel reservation (PCR) scheme, called HPCR_CB, for handoff motivated by the rapid evolving technology of mobile positioning. In this thesis, the author proposes a new scheme, called adaptive PCR_CB (APCR_CB), which is an extension of HPCR_CB by incorporating the concept of adaptive guard channels. In APCR_CB, the number of guard channel(s) is adjusted automatically based on the average handoff blocking rate measured in the past certain time period. The handoff blocking rate is controlled under the designated threshold and the new call blocking rate is minimized. The performance evaluation of the APCR_CB scheme is done by simulation. The result shows the APCR_CB scheme outperforms the original PCR, GC, and HPCR_CB schemes by controlling a hard constraint on the handoff blocking probability. It is able to achieve the optimal performance by maximizing the resource utilization and by adapting to changing traffic conditions automatically
    corecore