402 research outputs found

    Bandlimited Spatial Field Sampling with Mobile Sensors in the Absence of Location Information

    Full text link
    Sampling of physical fields with mobile sensor is an emerging area. In this context, this work introduces and proposes solutions to a fundamental question: can a spatial field be estimated from samples taken at unknown sampling locations? Unknown sampling location, sample quantization, unknown bandwidth of the field, and presence of measurement-noise present difficulties in the process of field estimation. In this work, except for quantization, the other three issues will be tackled together in a mobile-sampling framework. Spatially bandlimited fields are considered. It is assumed that measurement-noise affected field samples are collected on spatial locations obtained from an unknown renewal process. That is, the samples are obtained on locations obtained from a renewal process, but the sampling locations and the renewal process distribution are unknown. In this unknown sampling location setup, it is shown that the mean-squared error in field estimation decreases as O(1/n)O(1/n) where nn is the average number of samples collected by the mobile sensor. The average number of samples collected is determined by the inter-sample spacing distribution in the renewal process. An algorithm to ascertain spatial field's bandwidth is detailed, which works with high probability as the average number of samples nn increases. This algorithm works in the same setup, i.e., in the presence of measurement-noise and unknown sampling locations.Comment: Submitted to IEEE Trans on Signal Processin

    Transmission of a continuous signal via one-bit capacity channel

    Full text link
    We study the problem of the transmission of currently observed time variable signals via a channel that is capable of sending a single binary signal only for each measurement of the underlying process. For encoding and decoding, we suggest a modification othe adaptive delta modulation algorithm. This modification ensures tracking of time variable signals. We obtained upper estimates for the error for the case of noiseless transmission

    High-resolution distributed sampling of bandlimited fields with low-precision sensors

    Full text link
    The problem of sampling a discrete-time sequence of spatially bandlimited fields with a bounded dynamic range, in a distributed, communication-constrained, processing environment is addressed. A central unit, having access to the data gathered by a dense network of fixed-precision sensors, operating under stringent inter-node communication constraints, is required to reconstruct the field snapshots to maximum accuracy. Both deterministic and stochastic field models are considered. For stochastic fields, results are established in the almost-sure sense. The feasibility of having a flexible tradeoff between the oversampling rate (sensor density) and the analog-to-digital converter (ADC) precision, while achieving an exponential accuracy in the number of bits per Nyquist-interval per snapshot is demonstrated. This exposes an underlying ``conservation of bits'' principle: the bit-budget per Nyquist-interval per snapshot (the rate) can be distributed along the amplitude axis (sensor-precision) and space (sensor density) in an almost arbitrary discrete-valued manner, while retaining the same (exponential) distortion-rate characteristics. Achievable information scaling laws for field reconstruction over a bounded region are also derived: With N one-bit sensors per Nyquist-interval, Θ(logN)\Theta(\log N) Nyquist-intervals, and total network bitrate Rnet=Θ((logN)2)R_{net} = \Theta((\log N)^2) (per-sensor bitrate Θ((logN)/N)\Theta((\log N)/N)), the maximum pointwise distortion goes to zero as D=O((logN)2/N)D = O((\log N)^2/N) or D=O(Rnet2βRnet)D = O(R_{net} 2^{-\beta \sqrt{R_{net}}}). This is shown to be possible with only nearest-neighbor communication, distributed coding, and appropriate interpolation algorithms. For a fixed, nonzero target distortion, the number of fixed-precision sensors and the network rate needed is always finite.Comment: 17 pages, 6 figures; paper withdrawn from IEEE Transactions on Signal Processing and re-submitted to the IEEE Transactions on Information Theor

    Recursive Compressed Sensing

    Get PDF
    We introduce a recursive algorithm for performing compressed sensing on streaming data. The approach consists of a) recursive encoding, where we sample the input stream via overlapping windowing and make use of the previous measurement in obtaining the next one, and b) recursive decoding, where the signal estimate from the previous window is utilized in order to achieve faster convergence in an iterative optimization scheme applied to decode the new one. To remove estimation bias, a two-step estimation procedure is proposed comprising support set detection and signal amplitude estimation. Estimation accuracy is enhanced by a non-linear voting method and averaging estimates over multiple windows. We analyze the computational complexity and estimation error, and show that the normalized error variance asymptotically goes to zero for sublinear sparsity. Our simulation results show speed up of an order of magnitude over traditional CS, while obtaining significantly lower reconstruction error under mild conditions on the signal magnitudes and the noise level.Comment: Submitted to IEEE Transactions on Information Theor
    corecore