75 research outputs found

    Feature-Based Models for Three-Dimensional Data Fitting.

    Get PDF
    There are numerous techniques available for fitting a surface to any supplied data set. The feature-based modeling technique takes advantage of the known, geometric shape of the data by deforming a model having this generic shape to approximate the data. The model is constructed as a rational B-spline surface with characteristic features superimposed on its definition. The first step in the fitting process is to align the model with a data set using the center of mass, principal axes and/or landmarks. Using this initial orientation, the position, rotation and scale parameters are optimized using a Newton-type optimization of a least squares cost function. Once aligned, features embedded within the model, corresponding to pertinent characteristics of the shape, are used to improve the fit of the model to the data. Finally, the control vertex weights and positions of the rational B-spline model are optimized to approximate the data to within a specified tolerance. Since the characteristic features are defined within the model a creation, important measures are easily extracted from a data set, once fit. The feature-based modeling approach is demonstrated in two-dimensions by the fitting of five facial, silhouette profiles and in three-dimensions by the fitting of eleven human foot scans. The algorithm is tested for sensitivity to data distribution and structure and the extracted measures are tested for repeatability and accuracy. Limitations within the current implementation, future work and potential applications are also provided

    A total hip replacement toolbox : from CT-scan to patient-specific FE analysis

    Get PDF

    Shape Modelling of Bones: Application to the Primate Shoulder

    No full text
    The aims of this work were to develop techniques for describing morphological variations of shoulder bones and to test these on real datasets. The robust measurement and description of anatomical geometry can provide accu- rate estimation and better understanding of bone morphology. Feature lines were detected automatically using crest line techniques and shape information from shoulder bones was extracted based on the extracted feature lines. Redefinition of local coordinate systems was proposed utilising the crest line technique. Three dimensional statistical shape models (SSM) were built for a set of primate humeri and scapulae. Two types of models were constructed: one incorporated the main- tained original scale whilst the other used scaled bones. Variations were captured and quantified by Principal Component Analysis (PCA). The application can be extended generally to long bones and other complex bones and was also tested on human femora. Techniques to predict the shape of one bone from its neighbour at a joint were presented. PCA was used to reduce data dimensionality to a few principal components. Canonical Correlation Analysis (CCA) and Partial Least Square (PLS) Regression were applied to explore the linear morphological correlations between the two shoulder bones and to predict the shape of one segment given the shape of the adjoining segment

    Development of an Atlas-Based Segmentation of Cranial Nerves Using Shape-Aware Discrete Deformable Models for Neurosurgical Planning and Simulation

    Get PDF
    Twelve pairs of cranial nerves arise from the brain or brainstem and control our sensory functions such as vision, hearing, smell and taste as well as several motor functions to the head and neck including facial expressions and eye movement. Often, these cranial nerves are difficult to detect in MRI data, and thus represent problems in neurosurgery planning and simulation, due to their thin anatomical structure, in the face of low imaging resolution as well as image artifacts. As a result, they may be at risk in neurosurgical procedures around the skull base, which might have dire consequences such as the loss of eyesight or hearing and facial paralysis. Consequently, it is of great importance to clearly delineate cranial nerves in medical images for avoidance in the planning of neurosurgical procedures and for targeting in the treatment of cranial nerve disorders. In this research, we propose to develop a digital atlas methodology that will be used to segment the cranial nerves from patient image data. The atlas will be created from high-resolution MRI data based on a discrete deformable contour model called 1-Simplex mesh. Each of the cranial nerves will be modeled using its centerline and radius information where the centerline is estimated in a semi-automatic approach by finding a shortest path between two user-defined end points. The cranial nerve atlas is then made more robust by integrating a Statistical Shape Model so that the atlas can identify and segment nerves from images characterized by artifacts or low resolution. To the best of our knowledge, no such digital atlas methodology exists for segmenting nerves cranial nerves from MRI data. Therefore, our proposed system has important benefits to the neurosurgical community

    Deformable models for adaptive radiotherapy planning

    Get PDF
    Radiotherapy is the most widely used treatment for cancer, with 4 out of 10 cancer patients receiving radiotherapy as part of their treatment. The delineation of gross tumour volume (GTV) is crucial in the treatment of radiotherapy. An automatic contouring system would be beneficial in radiotherapy planning in order to generate objective, accurate and reproducible GTV contours. Image guided radiotherapy (IGRT) acquires patient images just before treatment delivery to allow any necessary positional correction. Consequently, real-time contouring system provides an opportunity to adopt radiotherapy on the treatment day. In this thesis, freely deformable models (FDM) and shape constrained deformable models (SCDMs) were used to automatically delineate the GTV for brain cancer and prostate cancer. Level set method (LSM) is a typical FDM which was used to contour glioma on brain MRI. A series of low level image segmentation methodologies are cascaded to form a case-wise fully automatic initialisation pipeline for the level set function. Dice similarity coefficients (DSCs) were used to evaluate the contours. Results shown a good agreement between clinical contours and LSM contours, in 93% of cases the DSCs was found to be between 60% and 80%. The second significant contribution is a novel development to the active shape model (ASM), a profile feature was selected from pre-computed texture features by minimising the Mahalanobis distance (MD) to obtain the most distinct feature for each landmark, instead of conventional image intensity. A new group-wise registration scheme was applied to solve the correspondence definition within the training data. This ASM model was used to delineated prostate GTV on CT. DSCs for this case was found between 0.75 and 0.91 with the mean DSC 0.81. The last contribution is a fully automatic active appearance model (AAM) which captures image appearance near the GTV boundary. The image appearance of inner GTV was discarded to spare the potential disruption caused by brachytherapy seeds or gold markers. This model outperforms conventional AAM at the prostate base and apex region by involving surround organs. The overall mean DSC for this case is 0.85

    Visualization and prediction of spatial deformation using thin-plate splines in the context of scoliosis

    Get PDF
    Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal

    A Framework for the Semantics-aware Modelling of Objects

    Get PDF
    The evolution of 3D visual content calls for innovative methods for modelling shapes based on their intended usage, function and role in a complex scenario. Even if different attempts have been done in this direction, shape modelling still mainly focuses on geometry. However, 3D models have a structure, given by the arrangement of salient parts, and shape and structure are deeply related to semantics and functionality. Changing geometry without semantic clues may invalidate such functionalities or the meaning of objects or their parts. We approach the problem by considering semantics as the formalised knowledge related to a category of objects; the geometry can vary provided that the semantics is preserved. We represent the semantics and the variable geometry of a class of shapes through the parametric template: an annotated 3D model whose geometry can be deformed provided that some semantic constraints remain satisfied. In this work, we design and develop a framework for the semantics-aware modelling of shapes, offering the user a single application environment where the whole workflow of defining the parametric template and applying semantics-aware deformations can take place. In particular, the system provides tools for the selection and annotation of geometry based on a formalised contextual knowledge; shape analysis methods to derive new knowledge implicitly encoded in the geometry, and possibly enrich the given semantics; a set of constraints that the user can apply to salient parts and a deformation operation that takes into account the semantic constraints and provides an optimal solution. The framework is modular so that new tools can be continuously added. While producing some innovative results in specific areas, the goal of this work is the development of a comprehensive framework combining state of the art techniques and new algorithms, thus enabling the user to conceptualise her/his knowledge and model geometric shapes. The original contributions regard the formalisation of the concept of annotation, with attached properties, and of the relations between significant parts of objects; a new technique for guaranteeing the persistence of annotations after significant changes in shape's resolution; the exploitation of shape descriptors for the extraction of quantitative information and the assessment of shape variability within a class; and the extension of the popular cage-based deformation techniques to include constraints on the allowed displacement of vertices. In this thesis, we report the design and development of the framework as well as results in two application scenarios, namely product design and archaeological reconstruction
    • …
    corecore