3,539 research outputs found

    Data driven optimal filtering for phase and frequency of noisy oscillations: application to vortex flowmetering

    Full text link
    A new method for extracting the phase of oscillations from noisy time series is proposed. To obtain the phase, the signal is filtered in such a way that the filter output has minimal relative variation in the amplitude (MIRVA) over all filters with complex-valued impulse response. The argument of the filter output yields the phase. Implementation of the algorithm and interpretation of the result are discussed. We argue that the phase obtained by the proposed method has a low susceptibility to measurement noise and a low rate of artificial phase slips. The method is applied for the detection and classification of mode locking in vortex flowmeters. A novel measure for the strength of mode locking is proposed.Comment: 12 pages, 10 figure

    A dynamical approach to generate chaos in a micromechanical resonator

    Full text link
    Chaotic systems, presenting complex and non-reproducible dynamics, may be found in nature from the interaction between planets to the evolution of the weather, but can also be tailored using current technologies for advanced signal processing. However, the realization of chaotic signal generators remains challenging, due to the involved dynamics of the underlying physics. In this paper, we experimentally and numerically present a disruptive approach to generate a chaotic signal from a micromechanical resonator. This technique overcomes the long-established complexity of controlling the buckling in micro/nano-mechanical structures by modulating either the amplitude or the frequency of the driving force applied to the resonator in the nonlinear regime. The experimental characteristic parameters of the chaotic regime, namely the Poincar\'e sections and Lyapunov exponents, are directly comparable to simulations for different configurations. These results confirm that this dynamical approach is transposable to any kind of micro/nano-mechanical resonators, from accelerometers to microphones. We demonstrate a direct application exploiting the mixing properties of the chaotic regime by transforming an off-the-shelf microdiaphragm into a true random number generator conformed to the National Institute of Standards and Technology specifications. The versatility of this original method opens new paths to combine chaos' unique properties with microstructures' exceptional sensitivity leading to emergent microsystems

    All-optical Regeneration For Phase-shift Keyed Optical Communication Systems

    Get PDF
    All-optical signal processing techniques for phase-shift keyed (PSK) systems were developed theoretically and demonstrated experimentally. Nonlinear optical effects in fibers, in particular four-wave mixing (FWM) that occurs via the ultra-fast Kerr nonlinearity, offer a flexible framework within which numerous signal processing functions can be accomplished. This research has focused on the regenerative capabilities of various FWM configurations in the context of processing PSK signals. Phase-preserving amplitude regeneration, phase regeneration, and phase-regenerative wavelength conversion are analyzed and demonstrated experimentally. The single-pump phase-conjugation process was used to regenerate RZ-DPSK pulse amplitudes with different input noise distributions, and the impact on output phase characteristics was studied. Experiments revealed a limited range over which amplitude noise could effectively be suppressed without introduction of phase noise, particularly for signals with intensity pattern effects. Phase regeneration requires use of phase-sensitive amplification (PSA), which occurs in nonlinear interferometers when the pump and signal frequencies are degenerate (NI-PSA), or in fiber directly through single-stage (degenerate) or cascaded (non-degenerate) FWM processes. A PSA based on a Sagnac interferometer provided the first experimental demonstration of DPSK phase and amplitude regeneration. The phase-regenerative capabilities of the NI-PSA are limited in practice by intrinsic noise conversion (amplitude to phase noise) and to a lesser extent by the requirement to modulate the pump wave to suppress stimulated Brillouin scattering (SBS). These limitations are relaxed in novel materials with higher SBS thresholds and nonlinearities. Degenerate FWM provides PSA in a traveling-wave configuration that intrinsically suppresses the noise conversion affecting the NI-PSA, while providing stronger phase-matched gain. Experiments confirmed superior phase-regenerative behavior to the NI-PSA with simultaneous reduction of amplitude noise for NRZ-DPSK signals. Phase-regenerative wavelength conversion (PR-WC) provides the regenerative properties of PSA at a new wavelength, and was proposed and demonstrated for the first time in this research. The parallel implementation of two FWM processes, phase-conjugation and frequency conversion, provides two idlers which exhibit interesting and useful regenerative properties. These were investigated theoretically and experimentally. Ideal phase-regenerative behavior is predicted when the contributing FWM processes are equally phase-matched, which can be maintained over any interaction length or wavelength shift provided the pump powers are properly adjusted. Depleted-pump regime PR-WC provides simultaneous phase and amplitude regeneration. Experiments confirmed regenerative behavior for wavelength shifts of the idlers up to 5 nm. Two techniques for phase regeneration of 4-level PSK signals were developed and evaluated. The first is based on parallel operation of PSAs suitable for processing 2-level PSK signals, where phase projection and regeneration are combined to recover the input data. Analysis of this scheme outlined the conditions required for effective phase regeneration and for practical implementation using known PSAs. A novel process based on FWM (parallel phase-conjugation followed by PSA) was developed and analyzed, and demonstrated using numerical simulations. These studies provide a basis for further work in this area
    corecore