47,576 research outputs found

    Distributed Averaging via Lifted Markov Chains

    Full text link
    Motivated by applications of distributed linear estimation, distributed control and distributed optimization, we consider the question of designing linear iterative algorithms for computing the average of numbers in a network. Specifically, our interest is in designing such an algorithm with the fastest rate of convergence given the topological constraints of the network. As the main result of this paper, we design an algorithm with the fastest possible rate of convergence using a non-reversible Markov chain on the given network graph. We construct such a Markov chain by transforming the standard Markov chain, which is obtained using the Metropolis-Hastings method. We call this novel transformation pseudo-lifting. We apply our method to graphs with geometry, or graphs with doubling dimension. Specifically, the convergence time of our algorithm (equivalently, the mixing time of our Markov chain) is proportional to the diameter of the network graph and hence optimal. As a byproduct, our result provides the fastest mixing Markov chain given the network topological constraints, and should naturally find their applications in the context of distributed optimization, estimation and control

    Fractal dimensions of the sagittal (interparietal) sutures in humans

    Get PDF
    Traditional studies of the cranial suture morphology have focused mostly on visual estimation and linear measurements, and thus on evaluating their complexity. This paper presents a new look on cranial sutures as curves, which can be analysed by fractal dimension. This new measure seems to be a much better method of expressing properties of sutural patterns than traditional methods. Our findings suggest that the fractal dimension of non-complicated interparietal sutures slightly exceeds the topological dimension of the line, that is 1.0, whereas the fractal dimension of complicated sutures may reach a value of 1.4 or even more. The difference between the minimum and maximum decimal fraction of the fractal dimension indicates a three-fold increase in complexity in the investigated sutures

    Persistence Flamelets: multiscale Persistent Homology for kernel density exploration

    Full text link
    In recent years there has been noticeable interest in the study of the "shape of data". Among the many ways a "shape" could be defined, topology is the most general one, as it describes an object in terms of its connectivity structure: connected components (topological features of dimension 0), cycles (features of dimension 1) and so on. There is a growing number of techniques, generally denoted as Topological Data Analysis, aimed at estimating topological invariants of a fixed object; when we allow this object to change, however, little has been done to investigate the evolution in its topology. In this work we define the Persistence Flamelets, a multiscale version of one of the most popular tool in TDA, the Persistence Landscape. We examine its theoretical properties and we show how it could be used to gain insights on KDEs bandwidth parameter

    Dimension Detection with Local Homology

    Full text link
    Detecting the dimension of a hidden manifold from a point sample has become an important problem in the current data-driven era. Indeed, estimating the shape dimension is often the first step in studying the processes or phenomena associated to the data. Among the many dimension detection algorithms proposed in various fields, a few can provide theoretical guarantee on the correctness of the estimated dimension. However, the correctness usually requires certain regularity of the input: the input points are either uniformly randomly sampled in a statistical setting, or they form the so-called (ε,δ)(\varepsilon,\delta)-sample which can be neither too dense nor too sparse. Here, we propose a purely topological technique to detect dimensions. Our algorithm is provably correct and works under a more relaxed sampling condition: we do not require uniformity, and we also allow Hausdorff noise. Our approach detects dimension by determining local homology. The computation of this topological structure is much less sensitive to the local distribution of points, which leads to the relaxation of the sampling conditions. Furthermore, by leveraging various developments in computational topology, we show that this local homology at a point zz can be computed \emph{exactly} for manifolds using Vietoris-Rips complexes whose vertices are confined within a local neighborhood of zz. We implement our algorithm and demonstrate the accuracy and robustness of our method using both synthetic and real data sets

    Interpretable statistics for complex modelling: quantile and topological learning

    Get PDF
    As the complexity of our data increased exponentially in the last decades, so has our need for interpretable features. This thesis revolves around two paradigms to approach this quest for insights. In the first part we focus on parametric models, where the problem of interpretability can be seen as a “parametrization selection”. We introduce a quantile-centric parametrization and we show the advantages of our proposal in the context of regression, where it allows to bridge the gap between classical generalized linear (mixed) models and increasingly popular quantile methods. The second part of the thesis, concerned with topological learning, tackles the problem from a non-parametric perspective. As topology can be thought of as a way of characterizing data in terms of their connectivity structure, it allows to represent complex and possibly high dimensional through few features, such as the number of connected components, loops and voids. We illustrate how the emerging branch of statistics devoted to recovering topological structures in the data, Topological Data Analysis, can be exploited both for exploratory and inferential purposes with a special emphasis on kernels that preserve the topological information in the data. Finally, we show with an application how these two approaches can borrow strength from one another in the identification and description of brain activity through fMRI data from the ABIDE project
    • …
    corecore