85 research outputs found

    Review on the Geophysical and UAV-Based Methods Applied to Landslides

    Get PDF
    peer reviewedLandslides (LS) represent geomorphological processes that can induce changes over time in the physical, hydrogeological, and mechanical properties of the involved materials. For geohazard assessment, the variations of these properties might be detected by a wide range of non-intrusive techniques, which can sometimes be confusing due to their significant variation in accuracy, suitability, coverage area, logistics, timescale, cost, and integration potential; this paper reviews common geophysical methods (GM) categorized as Emitted Seismic and Ambient Noise based and proposes an integrated approach between them for improving landslide studies; this level of integration (among themselves) is an important step ahead of integrating geophysical data with remote sensing data. The aforementioned GMs help to construct a framework based on physical properties that may be linked with site characterization (e.g., a landslide and its subsurface channel geometry, recharge pathways, rock fragments, mass flow rate, etc.) and dynamics (e.g., quantification of the rheology, saturation, fracture process, toe erosion, mass flow rate, deformation marks and spatiotemporally dependent geogenic pore-water pressure feedback through a joint analysis of geophysical time series, displacement and hydrometeorological measurements from the ground, air and space). A review of the use of unmanned aerial vehicles (UAV) based photogrammetry for the investigation of landslides was also conducted to highlight the latest advancement and discuss the synergy between UAV and geophysical in four possible broader areas: (i) survey planning, (ii) LS investigation, (iii) LS dynamics and (iv) presentation of results in GIS environment. Additionally, endogenous source mechanisms lead to the appearance of deformation marks on the surface and provide ground for the integrated use of UAV and geophysical monitoring for landslide early warning systems. Further development in this area requires UAVs to adopt more multispectral and other advanced sensors where their data are integrated with the geophysical one as well as the climatic data to enable Artificial Intelligent based prediction of LS

    Proceedings of the 1st WSEAS International Conference on "Environmental and Geological Science and Engineering (EG'08)"

    Get PDF
    This book contains the proceedings of the 1st WSEAS International Conference on Environmental and Geological Science and Engineering (EG'08) which was held in Malta, September 11-13, 2008. This conference aims to disseminate the latest research and applications in Renewable Energy, Mineral Resources, Natural Hazards and Risks, Environmental Impact Assessment, Urban and Regional Planning Issues, Remote Sensing and GIS, and other relevant topics and applications. The friendliness and openness of the WSEAS conferences, adds to their ability to grow by constantly attracting young researchers. The WSEAS Conferences attract a large number of well-established and leading researchers in various areas of Science and Engineering as you can see from http://www.wseas.org/reports. Your feedback encourages the society to go ahead as you can see in http://www.worldses.org/feedback.htm The contents of this Book are also published in the CD-ROM Proceedings of the Conference. Both will be sent to the WSEAS collaborating indices after the conference: www.worldses.org/indexes In addition, papers of this book are permanently available to all the scientific community via the WSEAS E-Library. Expanded and enhanced versions of papers published in this conference proceedings are also going to be considered for possible publication in one of the WSEAS journals that participate in the major International Scientific Indices (Elsevier, Scopus, EI, ACM, Compendex, INSPEC, CSA .... see: www.worldses.org/indexes) these papers must be of high-quality (break-through work) and a new round of a very strict review will follow. (No additional fee will be required for the publication of the extended version in a journal). WSEAS has also collaboration with several other international publishers and all these excellent papers of this volume could be further improved, could be extended and could be enhanced for possible additional evaluation in one of the editions of these international publishers. Finally, we cordially thank all the people of WSEAS for their efforts to maintain the high scientific level of conferences, proceedings and journals

    Flood Risk and Resilience

    Get PDF
    Flooding is widely recognized as a global threat, due to the extent and magnitude of damage it causes around the world each year. Reducing flood risk and improving flood resilience are two closely related aspects of flood management. This book presents the latest advances in flood risk and resilience management on the following themes: hazard and risk analysis, flood behaviour analysis, assessment frameworks and metrics and intervention strategies. It can help the reader to understand the current challenges in flood management and the development of sustainable flood management interventions to reduce the social, economic and environmental consequences from flooding

    Semantic location extraction from crowdsourced data

    Get PDF
    Crowdsourced Data (CSD) has recently received increased attention in many application areas including disaster management. Convenience of production and use, data currency and abundancy are some of the key reasons for attracting this high interest. Conversely, quality issues like incompleteness, credibility and relevancy prevent the direct use of such data in important applications like disaster management. Moreover, location information availability of CSD is problematic as it remains very low in many crowd sourced platforms such as Twitter. Also, this recorded location is mostly related to the mobile device or user location and often does not represent the event location. In CSD, event location is discussed descriptively in the comments in addition to the recorded location (which is generated by means of mobile device's GPS or mobile communication network). This study attempts to semantically extract the CSD location information with the help of an ontological Gazetteer and other available resources. 2011 Queensland flood tweets and Ushahidi Crowd Map data were semantically analysed to extract the location information with the support of Queensland Gazetteer which is converted to an ontological gazetteer and a global gazetteer. Some preliminary results show that the use of ontologies and semantics can improve the accuracy of place name identification of CSD and the process of location information extraction

    Integrated Assessment of Gully Erosion Processes, Using Multispectral Remote Sensing, Stochastic Modelling, and GIS-based Morphotectonic Analysis; A Case Study in the Southwest of Iran

    Get PDF
    Bodenerosion und besonders Gully-Erosion sind zwei der hauptverantwortlichen Erscheinungen auf der Erde, die zu einer Abnahme der Produktivität von Böden und zur Verunreinigung von Wasserressourcen führen. Gully-Erosion gehört zu den intensivsten Prozessen der Land-Degradation, besonders in großen Teilen Irans, die ackerbauliche Nutzung und Weideland bedrohen. Vorangegangenen Studien zufolge zählen das anstehende Gestein, die Vegetationsdichte, die Topographie und die Landnutzung und ihre Veränderung zu den Hauptursachen für Bodenerosion und Gully-Erosion im Speziellen. Im ersten Teil der Arbeit wird die Anfälligkeit des Mazayjan-Beckens (MZJ) im Südwesten Irans hinsichtlich der Gully-Erosion ermittelt. Hierfür wurden eine detaillierte digitale Geländeanalyse sowie eine stochastische Modellierung basierend auf den Prinzipien der mechanischen Statistik durchgeführt. Zu den Geländeparametern mit dem größten Einfluss zählen der Konvergenz Index, die Horizontalwölbung sowie die Hangneigung. Gully-Erosion ist die einflussreichste Form der Wasser-Erosion und trägt signifikant zur Sedimentdynamik im Einzugsgebiet bei. Aus diesem Grund wurden im zweiten Teil dieser Arbeit Geographische Informationssysteme und Fernerkundungsdaten eingesetzt, um Eingabedaten für die numerischen Modelle zu generieren, welche Erosions- und Ablagerungsraten im MJZ-Becken ermitteln. Da verschiedene Mechanismen wie Graben-, Sheet- und Gully-Erosion im Untersuchungsgebiet vorkommen, wurde das Unit Stream Power-based Erosion Deposition-Modell (USPED) in Kombination mit dem Stream Power Index (SPI) und der Flow Accumulation (FA) ausgewählt. Den Berechnungen zufolge, bei welchen die USPED angewandt und Gully- Erosion durch den SPI ermittelt wurde, sind rund 17,5 % der Flächen im Untersuchungsgebiet stabil oder von sehr geringen Erosions- und Ablagerungsraten betroffen. 28,2 % hingegen unterliegen sehr hoher Erosion und 19,2 % sind von Ablagerungsprozessen betroffen. Tektonische Aktivität im Untersuchungsgebiet, welches Teil der Zargos-Berge (ZM) ist, trug in der Vergangenheit signifikant zur Ausbildung der Abflussbedingungen bei und dadurch zur Entwicklung der Landschaft. Jüngere tektonische Prozesse (Oberes Quartär) in Form von Erdbeben und damit verbundenen Hebungsprozessen, Brüchen und Verwerfungen sind in großen Teilen des Untersuchungsgebiets noch aktiv. Im dritten Teil dieser Arbeit liegt der Schwerpunkt auf der Ermittlung der Anfälligkeit geologischer Formationen hinsichtlich der Gully-Erosion, welche auch durch die jüngeren tektonischen Aktivitäten verursacht wurden Dies erfolgte anhand von Digitalen Oberflächenmodellen (DEMs) unterschiedlicher Herkunft (ASTER-Daten, Topographische Karten und Luftbilder) und räumlicher Auflösung (30 m, 10 m und 5 m). Weitere Untersuchungen zum Vorkommen von Gullysystemen und tektonischen Aktivitäten, wie beispielsweise die Analyse von Flußeinzugsgebietsmorphologien sowie der Analyse der Longitudinalprofile der Vorfluter, zeigen dass die Gebiete, welche besonders anfällig gegenüber Gully-Erosion sind, durch Hebungen und Verwerfungen geprägt sind. Die Software TecDEM wurde verwendet, um abrupte Veränderungen im Flussprofil im mittleren Bereich des Einzugsgebiets (alluviale Ablagerungen) zu ermitteln. Folglich deutet das Vorhandensein von “Knickpoints“ tektonische Aktivitäten an, welche wiederum die Erosionsprozesse entlang des Flussprofils verändern. Die Ergebnisse zeigen, dass starke Gully-Erosion in Zusammenhang mit diesen tektonischen Aktivitäten steht, insbesondere im Südwesten des MZJ-Beckens.Im letzten Teil dieser Arbeit wurde die Anfälligkeit für Gully-Erosion in einem GIS-basierten stochastischen Modell, dem “Maximum Entropy Modell“ regionalisiert. Dies erfolgte unter der Verwendung von multispektralen ASTER-Daten, aus welchen die geologischen Faktoren, welche hauptverantwortlich für die räumliche Verteilung von Gully-Erosion sind, durch Band-Ratios abgeleitet wurden. Eine multispektrale Analyse von ASTER-Daten liefert wertvolle Ergebnisse über die mineralische Ausdifferenzierung im ZM-Gebiet, welche räumlich höher aufgelöste Informationen liefert als die herkömmlichen geologischen Karten des Gebiets. In dieser Studie wurde das Verhältnis zwischen vorhandener Gully-Erosion und der Kombination von Predictor-Variablen, bestehend aus topographischen Indizes und ASTERBand- Ratios, untersucht. Die räumliche Vorhersage zeigt, dass Gully-Erosion überwiegend in colluvialen/ alluvionalen Gebieten mit hohen Anteilen von Salz, Gips und/ oder schluffiger Textur auftritt und besonders in den Ebenen im südlichen Untersuchungsgebiet vorkommen. Die vorgestellte Methode ermöglicht eine wirkungsvolle Abschätzung der Gully-Erosion, welchen den Bodenschutz und das Land-Management im Südwesten Irans unterstützen kann

    Geomorphometry 2020. Conference Proceedings

    Get PDF
    Geomorphometry is the science of quantitative land surface analysis. It gathers various mathematical, statistical and image processing techniques to quantify morphological, hydrological, ecological and other aspects of a land surface. Common synonyms for geomorphometry are geomorphological analysis, terrain morphometry or terrain analysis and land surface analysis. The typical input to geomorphometric analysis is a square-grid representation of the land surface: a digital elevation (or land surface) model. The first Geomorphometry conference dates back to 2009 and it took place in Zürich, Switzerland. Subsequent events were in Redlands (California), Nánjīng (China), Poznan (Poland) and Boulder (Colorado), at about two years intervals. The International Society for Geomorphometry (ISG) and the Organizing Committee scheduled the sixth Geomorphometry conference in Perugia, Italy, June 2020. Worldwide safety measures dictated the event could not be held in presence, and we excluded the possibility to hold the conference remotely. Thus, we postponed the event by one year - it will be organized in June 2021, in Perugia, hosted by the Research Institute for Geo-Hydrological Protection of the Italian National Research Council (CNR IRPI) and the Department of Physics and Geology of the University of Perugia. One of the reasons why we postponed the conference, instead of canceling, was the encouraging number of submitted abstracts. Abstracts are actually short papers consisting of four pages, including figures and references, and they were peer-reviewed by the Scientific Committee of the conference. This book is a collection of the contributions revised by the authors after peer review. We grouped them in seven classes, as follows: • Data and methods (13 abstracts) • Geoheritage (6 abstracts) • Glacial processes (4 abstracts) • LIDAR and high resolution data (8 abstracts) • Morphotectonics (8 abstracts) • Natural hazards (12 abstracts) • Soil erosion and fluvial processes (16 abstracts) The 67 abstracts represent 80% of the initial contributions. The remaining ones were either not accepted after peer review or withdrawn by their Authors. Most of the contributions contain original material, and an extended version of a subset of them will be included in a special issue of a regular journal publication

    Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation: Special Report of the Intergovernmental Panel on Climate Change

    Get PDF
    This Special Report on Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (SREX) has been jointly coordinated by Working Groups I (WGI) and II (WGII) of the Intergovernmental Panel on Climate Change (IPCC). The report focuses on the relationship between climate change and extreme weather and climate events, the impacts of such events, and the strategies to manage the associated risks. The IPCC was jointly established in 1988 by the World Meteorological Organization (WMO) and the United Nations Environment Programme (UNEP), in particular to assess in a comprehensive, objective, and transparent manner all the relevant scientific, technical, and socioeconomic information to contribute in understanding the scientific basis of risk of human-induced climate change, the potential impacts, and the adaptation and mitigation options. Beginning in 1990, the IPCC has produced a series of Assessment Reports, Special Reports, Technical Papers, methodologies, and other key documents which have since become the standard references for policymakers and scientists.This Special Report, in particular, contributes to frame the challenge of dealing with extreme weather and climate events as an issue in decisionmaking under uncertainty, analyzing response in the context of risk management. The report consists of nine chapters, covering risk management; observed and projected changes in extreme weather and climate events; exposure and vulnerability to as well as losses resulting from such events; adaptation options from the local to the international scale; the role of sustainable development in modulating risks; and insights from specific case studies

    The ecomics of ecosystems and biodiversity: scoping the scale

    Get PDF
    The G8 decided in March 2007 to initiate a “Review on the economics of biodiversity loss”, in the so called Potsdam Initiative: 'In a global study we will initiate the process of analysing the global economic benefit of biological diversity, the costs of the loss of biodiversity and the failure to take protective measures versus the costs of effective conservation. The study is being supported by the European Commission (together with the European Environmental Agency and in cooperation with the German Government. “The objective of the current study is to provide a coherent overview of existing scientific knowledge upon which to base the economics of the Review, and to propose a coherent global programme of scientific work, both for Phase 2 (consolidation) and to enable more robust future iterations of the Review beyond 2010.

    Impact of Etna’s volcanic emission on major ions and trace elements composition of the atmospheric deposition

    Get PDF
    Mt. Etna, on the eastern coast of Sicily (Italy), is one of the most active volcanoes on the planet and it is widely recognized as a big source of volcanic gases (e.g., CO2 and SO2), halogens, and a lot of trace elements, to the atmosphere in the Mediterranean region. Especially during eruptive periods, Etna’s emissions can be dispersed over long distances and cover wide areas. A group of trace elements has been recently brought to attention for their possible environmental and human health impacts, the Technology-critical elements. The current knowledge about their geochemical cycles is still scarce, nevertheless, recent studies (Brugnone et al., 2020) evidenced a contribution from the volcanic activity for some of them (Te, Tl, and REE). In 2021, in the framework of the research project “Pianeta Dinamico”, by INGV, a network of 10 bulk collectors was implemented to collect, monthly, atmospheric deposition samples. Four of these collectors are located on the flanks of Mt. Etna, other two are in the urban area of Catania and three are in the industrial area of Priolo, all most of the time downwind of the main craters. The last one, close to Cesarò (Nebrodi Regional Park), represents the regional background. The research aims to produce a database on major ions and trace element compositions of the bulk deposition and here we report the values of the main physical-chemical parameters and the deposition fluxes of major ions and trace elements from the first year of research. The pH ranged from 3.1 to 7.7, with a mean value of 5.6, in samples from the Etna area, while it ranged between 5.2 and 7.6, with a mean value of 6.4, in samples from the other study areas. The EC showed values ranging from 5 to 1032 μS cm-1, with a mean value of 65 μS cm-1. The most abundant ions were Cl- and SO42- for anions, Na+ and Ca+ for cations, whose mean deposition fluxes, considering all sampling sites, were 16.6, 6.8, 8.4, and 6.0 mg m-2 d, respectively. The highest deposition fluxes of volcanic refractory elements, such as Al, Fe, and Ti, were measured in the Etna’s sites, with mean values of 948, 464, and 34.3 μg m-2 d-1, respectively, higher than those detected in the other sampling sites, further away from the volcanic source (26.2, 12.4, 0.5 μg m-2 d-1, respectively). The same trend was also observed for volatile elements of prevailing volcanic origin, such as Tl (0.49 μg m-2 d-1), Te (0.07 μg m-2 d-1), As (0.95 μg m-2 d-1), Se (1.92 μg m-2 d-1), and Cd (0.39 μg m-2 d-1). Our preliminary results show that, close to a volcanic area, volcanic emissions must be considered among the major contributors of ions and trace elements to the atmosphere. Their deposition may significantly impact the pedosphere, hydrosphere, and biosphere and directly or indirectly human health

    EVOLUTION OF THE SUBCONTINENTAL LITHOSPHERE DURING MESOZOIC TETHYAN RIFTING: CONSTRAINTS FROM THE EXTERNAL LIGURIAN MANTLE SECTION (NORTHERN APENNINE, ITALY)

    Get PDF
    Our study is focussed on mantle bodies from the External Ligurian ophiolites, within the Monte Gavi and Monte Sant'Agostino areas. Here, two distinct pyroxenite-bearing mantle sections were recognized, mainly based on their plagioclase-facies evolution. The Monte Gavi mantle section is nearly undeformed and records reactive melt infiltration under plagioclase-facies conditions. This process involved both peridotites (clinopyroxene-poor lherzolites) and enclosed spinel pyroxenite layers, and occurred at 0.7–0.8 GPa. In the Monte Gavi peridotites and pyroxenites, the spinel-facies clinopyroxene was replaced by Ca-rich plagioclase and new orthopyroxene, typically associated with secondary clinopyroxene. The reactive melt migration caused increase of TiO2 contents in relict clinopyroxene and spinel, with the latter also recording a Cr2O3 increase. In the Monte Gavi peridotites and pyroxenites, geothermometers based on slowly diffusing elements (REE and Y) record high temperature conditions (1200-1250 °C) related to the melt infiltration event, followed by subsolidus cooling until ca. 900°C. The Monte Sant'Agostino mantle section is characterized by widespread ductile shearing with no evidence of melt infiltration. The deformation recorded by the Monte Sant'Agostino peridotites (clinopyroxene-rich lherzolites) occurred at 750–800 °C and 0.3–0.6 GPa, leading to protomylonitic to ultramylonitic textures with extreme grain size reduction (10–50 μm). Compared to the peridotites, the enclosed pyroxenite layers gave higher temperature-pressure estimates for the plagioclase-facies re-equilibration (870–930 °C and 0.8–0.9 GPa). We propose that the earlier plagioclase crystallization in the pyroxenites enhanced strain localization and formation of mylonite shear zones in the entire mantle section. We subdivide the subcontinental mantle section from the External Ligurian ophiolites into three distinct domains, developed in response to the rifting evolution that ultimately formed a Middle Jurassic ocean-continent transition: (1) a spinel tectonite domain, characterized by subsolidus static formation of plagioclase, i.e. the Suvero mantle section (Hidas et al., 2020), (2) a plagioclase mylonite domain experiencing melt-absent deformation and (3) a nearly undeformed domain that underwent reactive melt infiltration under plagioclase-facies conditions, exemplified by the the Monte Sant'Agostino and the Monte Gavi mantle sections, respectively. We relate mantle domains (1) and (2) to a rifting-driven uplift in the late Triassic accommodated by large-scale shear zones consisting of anhydrous plagioclase mylonites. Hidas K., Borghini G., Tommasi A., Zanetti A. & Rampone E. 2021. Interplay between melt infiltration and deformation in the deep lithospheric mantle (External Liguride ophiolite, North Italy). Lithos 380-381, 105855
    corecore