142,408 research outputs found

    Estimating soil degradation in montane grasslands of North-eastern Italian Alps (Italy)

    Get PDF
    Grasslands cover a large portion of the terrestrial ecosystems, and are vital for biodiversity conservation, environmental protection and livestock husbandry. However, grasslands are degraded due to unreasonable management worldwide, i.e., soil erosion indirectly due to the damage of overgrazing on vegetation coverage and soil texture. An in-depth investigation is necessary to quantify soil erosion in alpine pastures, in order to manage grasslands more sustainably. In this work, we collected freely available satellite images and carried out intensive field surveys for the whole Autonomous Province of Trento (Northeastern Italian Alps) in 2016. The area (and volume) of soil erosions were then estimated and shown in maps. The average of the depths of soil erosion measured in field was used as a reference for estimating soil erosion of the entire study area. High-resolution DEMs difference in soil surface conditions was also computed in two representative areas between pre- and post-degradation to estimate the volume and the average depth of eroded soils. The degradation of soil in the study areas has been estimated in 144063 m2 and an estimated volume of 33610 ± 1800 m3. Results indicate that our procedure can serve as a low-cost approach for a rapid estimation of soil erosion in mountain areas. Mapping soil erosion can improve the sustainability of grazing management system and reduce the risk of pastureland degradation at large spatial scales

    Potential relevance of differential settlements in earthquake-induced liquefaction damage assessment

    Get PDF
    The assessment of vulnerability of buildings subjected to earthquake-induced liquefaction requires the definition of an integrated damage scale accounting both for ground motion damage and ground permanent movements, which cause rigid-body settlement and tilt of the building but also flexural demand on members due to differential settlement of pad footings. Nevertheless, most of the existing procedures for the estimation of differential settlements rely only in soil characteristics, thus neglecting the influence of building stiffness on the soil-structure interaction. In the present work, based on simplified modelling of soil-structure variability and on preliminary assumption of force distributions, representative values of members' demand due to differential settlement are proposed. A simple approach relying on the structure-to-soil stiffness ratio and the equivalent soil degradation extent under pad footings is adopted. The methodology is calibrated by means of a parametric linear analysis for a set of planar frames. Relative flexural demand due to differential settlements normalised to the seismic flexural demand are obtained. Results show that their relevance may not be very severe, thus damage assessment of differential settlements could be likely accounted separately from flexural and rigid-body demand

    Landslide Risk: Economic Valuation in the North-Eastern Zone of Medellin City

    Get PDF
    Natural disasters of a geodynamic nature can cause enormous economic and human losses. The economic costs of a landslide disaster include relocation of communities and physical repair of urban infrastructure. However, when performing a quantitative risk analysis, generally, the indirect economic consequences of such an event are not taken into account. A probabilistic approach methodology that considers several scenarios of hazard and vulnerability to measure the magnitude of the landslide and to quantify the economic costs is proposed. With this approach, it is possible to carry out a quantitative evaluation of the risk by landslides, allowing the calculation of the economic losses before a potential disaster in an objective, standardized and reproducible way, taking into account the uncertainty of the building costs in the study zone. The possibility of comparing different scenarios facilitates the urban planning process, the optimization of interventions to reduce risk to acceptable levels and an assessment of economic losses according to the magnitude of the damage. For the development and explanation of the proposed methodology, a simple case study is presented, located in north-eastern zone of the city of Medellín. This area has particular geomorphological characteristics, and it is also characterized by the presence of several buildings in bad structural conditions. The proposed methodology permits to obtain an estimative of the probable economic losses by earthquake-induced landslides, taking into account the uncertainty of the building costs in the study zone. The obtained estimative shows that the structural intervention of the buildings produces a reduction the order of 21 % in the total landslide risk. © Published under licence by IOP Publishing Ltd

    Seismic hazard and risk in Shanghai and estimation of expected building damage

    Get PDF
    The People's Republic of China is in the process of rapid demographic, economic and urban change including nationwide engineering and building construction at an unprecedented scale. The mega-city of Shanghai is at the centre of China's modernisation. Rapid urbanisation and building growth have increased the exposure of people and property to natural disasters. The seismic hazard of Shanghai and its vicinity is presented from a seismogenic free-zone methodology. A PGA value of 49 cm s-2 and a maximum intensity value of VII for the Chinese Seismic Intensity Scale (a scale similar to the Modified Mercalli) for a 99% probability of non-exceedance in 50 years are determined for Shanghai city. The potential building damage for three independent districts of the city centre named Putuo, Nanjing Road and Pudong are calculated using damage vulnerability matrices. It is found that old civil houses of brick and timber are the most vulnerable buildings with potentially a mean probability value of 7.4% of this building structure type exhibiting the highest damage grade at intensity VII

    Multi-hazard risk assessment using GIS in urban areas: a case study for the city of Turrialba, Costa Rica

    Get PDF
    In the framework of the UNESCO sponsored project on “Capacity Building for Natural Disaster Reduction” a case study was carried out on multi-hazard risk assessment of the city of Turrialba, located in the central part of Costa Rica. The city with a population of 33,000 people is located in an area, which is regularly affected by flooding, landslides and earthquakes. In order to assist the local emergency commission and the municipality, a pilot study was carried out in the development of a GIS –based system for risk assessment and management. The work was made using an orthophoto as basis, on which all buildings, land parcels and roads, within the city and its direct surroundings were digitized, resulting in a digital parcel map, for which a number of hazard and vulnerability attributes were collected in the field. Based on historical information a GIS database was generated, which was used to generate flood depth maps for different return periods. For determining the seismic hazard a modified version of the Radius approach was used and the landslide hazard was determined based on the historical landslide inventory and a number of factor maps, using a statistical approach. The cadastral database of the city was used, in combination with the various hazard maps for different return periods to generate vulnerability maps for the city. In order to determine cost of the elements at risk, differentiation was made between the costs of the constructions and the costs of the contents of the buildings. The cost maps were combined with the vulnerability maps and the hazard maps per hazard type for the different return periods, in order to obtain graphs of probability versus potential damage. The resulting database can be a tool for local authorities to determine the effect of certain mitigation measures, for which a cost-benefit analysis can be carried out. The database also serves as an important tool in the disaster preparedness phase of disaster management at the municipal level

    A study of the effects of ground cover on overwintering slug populations and effect of coulter design on slug incidence in direct drilling : a thesis presented in partial fulfilment of the requirements for the degree of Master of Agricultural Science at Massey University

    Get PDF
    A two stage study involving the effect of vegetation cover on overwintering slug populations, and the effect of coulter design on slug incidence and damage in a direct drilled cereal was carried out during the 1980/81 growring season. The first stage of the study showed that ground cover affected slug activity on the soil surface, but only in the most adverse environment did any actual decrease in slug populations occur. Differences occurred in the effectiveness of the trapping techniques depending on the density of the ground cover. Pitfall traps appeared to be more effective in dense ground covers, while brick or shelter traps appeared to be more effective in low density ground covers and especially with bare ground. Rainfall, soil temperature and soil moisture were measured and it appeared that slug numbers recorded in the traps were correlated to different environmental parameters depending on the ground cover. In dense covers the slug number recorded was correlated to temperature, in medium density ground covers the numbers had a slight correlation to soil moisture, and in low density ground covers they were correlated to rainfall. The second stage of the study involved two dates of drilling, using three coulter types (triple disc, hoe, chisel coulter) and measuring slug numbers occurring in the seed grooves and slug damage to seeds and seedlings. It was found that coulter design had no effect on slug ingression into the seed groove, or on slug damage to the direct drilled crop. There was however a strong correlation between slug numbers in the seed groove and seed and seedling damage (r=0.78, r=0.93 respectively). Pre drilling conditions affected the number of slugs entering the seed grooves (the denser the vegetation the greater the slug number occurring in the seed groove), and slug damage to the seedlings. Moisture levels also affected the number of slugs entering the seed grooves and seed and seedling damage by slugs. Moister conditions produced the greater number of slugs in the seed grooves and the highest seed and seedling damage

    Designing Web-enabled services to provide damage estimation maps caused by natural hazards

    Get PDF
    The availability of building stock inventory data and demographic information is an important requirement for risk assessment studies when attempting to predict and estimate losses due to natural hazards such as earthquakes, storms, floods or tsunamis. The better this information is provided, the more accurate are predictions on damage to structures and lifelines and the better can expected impacts on the population be estimated. When a disaster strikes, a map is often one of the first requirements for answering questions related to location, casualties and damage zones caused by the event. Maps of appropriate scale that represent relative and absolute damage distributions may be of great importance for rescuing lives and properties, and for providing relief. However, this type of maps is often difficult to obtain during the first hours or even days after the occurrence of a natural disaster. The Open Geospatial Consortium Web Services (OWS) Specifications enable access to datasets and services using shared, distributed and interoperable environments through web-enabled services. In this paper we propose the use of OWS in view of these advantages as a possible solution for issues related to suitable dataset acquisition for risk assessment studies. The design of web-enabled services was carried out using the municipality of Managua (Nicaragua) and the development of damage and loss estimation maps caused by earthquakes as a first case study. Four organizations located in different places are involved in this proposal and connected through web services, each one with a specific role

    Sampling Error in Relation to Cyst Nematode Population Density Estimation in Small Field Plots

    Get PDF
    Cyst nematodes are serious plant-parasitic pests which could cause severe yield losses and extensive damage. Since there is still very little information about error of population density estimation in small field plots, this study contributes to the broad issue of population density assessment. It was shown that there was no significant difference between cyst counts of five or seven bulk samples taken per each 1-m(2) plot, if average cyst count per examined plot exceeds 75 cysts per 100 g of soil. Goodness of fit of data to probability distribution tested with chi(2) test confirmed a negative binomial distribution of cyst counts for 21 out of 23 plots. The recommended measure of sampling precision of 17% expressed through coefficient of variation (cv) was achieved if the plots of 1 m(2) contaminated with more than 90 cysts per 100 g of soil were sampled with 10-core bulk samples taken in five repetitions. If plots were contaminated with less than 75 cysts per 100 g of soil, 10-core bulk samples taken in seven repetitions gave cv higher than 23%. This study indicates that more attention should be paid on estimation of sampling error in experimental field plots to ensure more reliable estimation of population density of cyst nematodes

    ReAFFIRM: Real-time Assessment of Flash Flood Impacts: a Regional high-resolution Method

    Get PDF
    Flash floods evolve rapidly in time, which poses particular challenges to emergency managers. One way to support decision-making is to complement models that estimate the flash flood hazard (e.g. discharge or return period) with tools that directly translate the hazard into the expected socio-economic impacts. This paper presents a method named ReAFFIRM that uses gridded rainfall estimates to assess in real time the flash flood hazard and translate it into the corresponding impacts. In contrast to other studies that mainly focus on in- dividual river catchments, the approach allows for monitoring entire regions at high resolution. The method consists of the following three components: (i) an already existing hazard module that processes the rainfall into values of exceeded return period in the drainage network, (ii) a flood map module that employs the flood maps created within the EU Floods Directive to convert the return periods into the expected flooded areas and flood depths, and (iii) an impact assessment module that combines the flood depths with several layers of socio- economic exposure and vulnerability. Impacts are estimated in three quantitative categories: population in the flooded area, economic losses, and affected critical infrastructures. The performance of ReAFFIRM is shown by applying it in the region of Catalonia (NE Spain) for three significant flash flood events. The results show that the method is capable of identifying areas where the flash floods caused the highest impacts, while some locations affected by less significant impacts were missed. In the locations where the flood extent corresponded to flood observations, the assessments of the population in the flooded area and affected critical infrastructures seemed to perform reasonably well, whereas the economic losses were systematically overestimated. The effects of different sources of uncertainty have been discussed: from the estimation of the hazard to its translation into impacts, which highly depends on the quality of the employed datasets, and in particular on the quality of the rainfall inputs and the comprehensiveness of the flood maps.Peer ReviewedPostprint (published version
    corecore