325 research outputs found

    Hierarchical Spatio-Temporal Morphable Models for Representation of complex movements for Imitation Learning

    No full text
    Imitation learning is a promising technique for teaching robots complex movement sequences. One key problem in this area is the transfer of perceived movement characteristics from perception to action. For the solution of this problem, representations are required that are suitable for the analysis and the synthesis of complex action sequences. We describe the method of Hierarchical Spatio-Temporal Morphable Models that allows an automatic segmentation of movements sequences into movement primitives, and a modeling of these primitives by morphing between a set of prototypical trajectories. We use HSTMMs in an imitation learning task for human writing movements. The models are learned from recorded trajectories and transferred to a human-like robot arm. Due to the generalization proper- ties of our movement representation, the arm is capable of synthesizing new writing movements with only a few learning examples

    A Survey of Deep Learning in Sports Applications: Perception, Comprehension, and Decision

    Full text link
    Deep learning has the potential to revolutionize sports performance, with applications ranging from perception and comprehension to decision. This paper presents a comprehensive survey of deep learning in sports performance, focusing on three main aspects: algorithms, datasets and virtual environments, and challenges. Firstly, we discuss the hierarchical structure of deep learning algorithms in sports performance which includes perception, comprehension and decision while comparing their strengths and weaknesses. Secondly, we list widely used existing datasets in sports and highlight their characteristics and limitations. Finally, we summarize current challenges and point out future trends of deep learning in sports. Our survey provides valuable reference material for researchers interested in deep learning in sports applications

    Analysis of movement quality in full-body physical activities

    Get PDF
    Full-body human movement is characterized by fine-grain expressive qualities that humans are easily capable of exhibiting and recognizing in others' movement. In sports (e.g., martial arts) and performing arts (e.g., dance), the same sequence of movements can be performed in a wide range of ways characterized by different qualities, often in terms of subtle (spatial and temporal) perturbations of the movement. Even a non-expert observer can distinguish between a top-level and average performance by a dancer or martial artist. The difference is not in the performed movements-the same in both cases-but in the \u201cquality\u201d of their performance. In this article, we present a computational framework aimed at an automated approximate measure of movement quality in full-body physical activities. Starting from motion capture data, the framework computes low-level (e.g., a limb velocity) and high-level (e.g., synchronization between different limbs) movement features. Then, this vector of features is integrated to compute a value aimed at providing a quantitative assessment of movement quality approximating the evaluation that an external expert observer would give of the same sequence of movements. Next, a system representing a concrete implementation of the framework is proposed. Karate is adopted as a testbed. We selected two different katas (i.e., detailed choreographies of movements in karate) characterized by different overall attitudes and expressions (aggressiveness, meditation), and we asked seven athletes, having various levels of experience and age, to perform them. Motion capture data were collected from the performances and were analyzed with the system. The results of the automated analysis were compared with the scores given by 14 karate experts who rated the same performances. Results show that the movement-quality scores computed by the system and the ratings given by the human observers are highly correlated (Pearson's correlations r = 0.84, p = 0.001 and r = 0.75, p = 0.005)

    Irish Machine Vision and Image Processing Conference Proceedings 2017

    Get PDF

    On Action Quality Assessment

    Full text link
    In this dissertation, we tackle the task of quantifying the quality of actions, i.e., how well an action was performed using computer vision. Existing methods used human body pose-based features to express the quality contained in an action sample. Human body pose estimation in actions such as sports actions, like diving and gymnastic vault, is particularly challenging, since the athletes undergo convoluted transformations while performing their routines. Moreover, pose-based features do not take into account visual cues such as water splash in diving. Visual cues are taken into account by human judges. In our first work, we show that using visual representation -- spatiotemporal features computed using a 3D convolutional neural network -- is more suitable as those attend to appearance and salient motion patterns of the athlete\u27s performance. Along with developing three action quality assessment (AQA) frameworks, we also compile a diving and gymnastic vault dataset. Rather, learning an action-specific model, in our second work, we show that learning to assess the quality of multiple actions jointly is more efficient as it can exploit shared/common elements of quality among different actions. All-action modeling better uses the data, shows better generalization, and adaptation to unseen/novel action classes. Taking inspiration from the \u27learning by teaching\u27 method, we propose to take multitask learning (MTL) approach to AQA, unlike existing approaches, which follow single task learning (STL) paradigm. In our MTL approach we force the network to delineate the action sample -- recognize the action in detail, and commentate on good and bad points of the performance, in addition to the main task of AQA scoring. Through this better characterization of action sample, we are able to obtain state-of-the-art results on the task of AQA. To enable our MTL approach, we also released the largest multitask AQA dataset, MTL-AQA
    corecore