114,507 research outputs found

    Investigating prior parameter distributions in the inverse modelling of water distribution hydraulic models

    Get PDF
    PublishedJournal Article© 2014 Journal of Mechanical Engineering. All rights reserved. Inverse modelling concentrates on estimating water distribution system (WDS) model parameters that are not directly measurable, e.g. pipe roughness coefficients, which can, therefore, only be estimated by indirect approaches, i.e. inverse modelling. Estimation of the parameter and predictive uncertainty of WDS models is an essential part of the inverse modelling process. Recently, Markov Chain Monte Carlo (MCMC) simulations have gained in popularity in uncertainty analyses due to their effective and efficient exploration of posterior parameter probability density functions (pdf). A Bayesian framework is used to infer prior parameter information via a likelihood function to plausible ranges of posterior parameter pdf. Improved parameter and predictive uncertainty are achieved through the incorporation of prior pdf of parameter values and the use of a generalized likelihood function. We used three prior information sampling schemes to infer the pipe roughness coefficients of WDS models. A hypothetical case study and a real-world WDS case study were used to illustrate the strengths and weaknesses of a particular selection of a prior information pdf. The results obtained show that the level of parameter identifiability (i.e. sensitivity) is an important property for prior pdf selection.We are obliged to Jasper A. Vrugt and Cajo ter Braak for providing the code of the DREAM(ZS) algorithm and graphical post-processing software

    Toward improved identifiability of hydrologic model parameters: The information content of experimental data

    Get PDF
    We have developed a sequential optimization methodology, entitled the parameter identification method based on the localization of information (PIMLI) that increases information retrieval from the data by inferring the location and type of measurements that are most informative for the model parameters. The PIMLI approach merges the strengths of the generalized sensitivity analysis (GSA) method [Spear and Hornberger, 1980], the Bayesian recursive estimation (BARE) algorithm [Thiemann et al., 2001], and the Metropolis algorithm [Metropolis et al., 1953]. Three case studies with increasing complexity are used to illustrate the usefulness and applicability of the PIMLI methodology. The first two case studies consider the identification of soil hydraulic parameters using soil water retention data and a transient multistep outflow experiment (MSO), whereas the third study involves the calibration of a conceptual rainfall-runoff model

    Data assimilation in slow-fast systems using homogenized climate models

    Full text link
    A deterministic multiscale toy model is studied in which a chaotic fast subsystem triggers rare transitions between slow regimes, akin to weather or climate regimes. Using homogenization techniques, a reduced stochastic parametrization model is derived for the slow dynamics. The reliability of this reduced climate model in reproducing the statistics of the slow dynamics of the full deterministic model for finite values of the time scale separation is numerically established. The statistics however is sensitive to uncertainties in the parameters of the stochastic model. It is investigated whether the stochastic climate model can be beneficial as a forecast model in an ensemble data assimilation setting, in particular in the realistic setting when observations are only available for the slow variables. The main result is that reduced stochastic models can indeed improve the analysis skill, when used as forecast models instead of the perfect full deterministic model. The stochastic climate model is far superior at detecting transitions between regimes. The observation intervals for which skill improvement can be obtained are related to the characteristic time scales involved. The reason why stochastic climate models are capable of producing superior skill in an ensemble setting is due to the finite ensemble size; ensembles obtained from the perfect deterministic forecast model lacks sufficient spread even for moderate ensemble sizes. Stochastic climate models provide a natural way to provide sufficient ensemble spread to detect transitions between regimes. This is corroborated with numerical simulations. The conclusion is that stochastic parametrizations are attractive for data assimilation despite their sensitivity to uncertainties in the parameters.Comment: Accepted for publication in Journal of the Atmospheric Science

    Flexible Tweedie regression models for continuous data

    Full text link
    Tweedie regression models provide a flexible family of distributions to deal with non-negative highly right-skewed data as well as symmetric and heavy tailed data and can handle continuous data with probability mass at zero. The estimation and inference of Tweedie regression models based on the maximum likelihood method are challenged by the presence of an infinity sum in the probability function and non-trivial restrictions on the power parameter space. In this paper, we propose two approaches for fitting Tweedie regression models, namely, quasi- and pseudo-likelihood. We discuss the asymptotic properties of the two approaches and perform simulation studies to compare our methods with the maximum likelihood method. In particular, we show that the quasi-likelihood method provides asymptotically efficient estimation for regression parameters. The computational implementation of the alternative methods is faster and easier than the orthodox maximum likelihood, relying on a simple Newton scoring algorithm. Simulation studies showed that the quasi- and pseudo-likelihood approaches present estimates, standard errors and coverage rates similar to the maximum likelihood method. Furthermore, the second-moment assumptions required by the quasi- and pseudo-likelihood methods enables us to extend the Tweedie regression models to the class of quasi-Tweedie regression models in the Wedderburn's style. Moreover, it allows to eliminate the non-trivial restriction on the power parameter space, and thus provides a flexible regression model to deal with continuous data. We provide \texttt{R} implementation and illustrate the application of Tweedie regression models using three data sets.Comment: 34 pages, 8 figure

    Contamination of stellar-kinematic samples and uncertainty about dark matter annihilation profiles in ultrafaint dwarf galaxies: the example of Segue I

    Full text link
    The expected gamma-ray flux coming from dark matter annihilation in dwarf spheroidal (dSph) galaxies depends on the so-called `J-factor', the integral of the squared dark matter density along the line-of-sight. We examine the degree to which estimates of J are sensitive to contamination (by foreground Milky Way stars and stellar streams) of the stellar-kinematic samples that are used to infer dark matter densities in `ultrafaint' dSphs. Applying standard kinematic analyses to hundreds of mock data sets that include varying levels of contamination, we find that mis-classified contaminants can cause J-factors to be overestimated by orders of magnitude. Stellar-kinematic data sets for which we obtain such biased estimates tend 1) to include relatively large fractions of stars with ambiguous membership status, and 2) to give estimates for J that are sensitive to specific choices about how to weight and/or to exclude stars with ambiguous status. Comparing publicly-available stellar-kinematic samples for the nearby dSphs Reticulum~II and Segue~I, we find that only the latter displays both of these characteristics. Estimates of Segue~I's J-factor should therefore be regarded with a larger degree of caution when planning and interpreting gamma-ray observations. Moreover, robust interpretations regarding dark matter annihilation in dSph galaxies in general will require explicit examination of how interlopers might affect the inferred dark matter density profile.Comment: 12 pages, 8 figures. New appendix A (joint light/dark matter likelihood), results unchanged. Match accepted MNRAS versio
    corecore