29,419 research outputs found

    Horvitz-Thompson estimators for functional data: asymptotic confidence bands and optimal allocation for stratified sampling

    Full text link
    When dealing with very large datasets of functional data, survey sampling approaches are useful in order to obtain estimators of simple functional quantities, without being obliged to store all the data. We propose here a Horvitz--Thompson estimator of the mean trajectory. In the context of a superpopulation framework, we prove under mild regularity conditions that we obtain uniformly consistent estimators of the mean function and of its variance function. With additional assumptions on the sampling design we state a functional Central Limit Theorem and deduce asymptotic confidence bands. Stratified sampling is studied in detail, and we also obtain a functional version of the usual optimal allocation rule considering a mean variance criterion. These techniques are illustrated by means of a test population of N=18902 electricity meters for which we have individual electricity consumption measures every 30 minutes over one week. We show that stratification can substantially improve both the accuracy of the estimators and reduce the width of the global confidence bands compared to simple random sampling without replacement.Comment: Accepted for publication in Biometrik

    A simple variance estimator of change for rotating repeated surveys: an application to the EU-SILC household surveys

    No full text
    A common problem is to compare two cross-sectional estimates for the same study variable taken on two different waves or occasions, and to judge whether the change observed is statistically significant. This involves the estimation of the sampling variance of the estimator of change. The estimation of this variance would be relatively straightforward if cross-sectional estimates were based on the same sample. Unfortunately, samples are not completely overlapping, because of rotations used in repeated surveys. We propose a simple approach based on a multivariate (general) linear regression model. The variance estimator proposed is not a model-based estimator. We show that the estimator proposed is design consistent when the sampling fractions are negligible. It can accommodate stratified and two-stage sampling designs. The main advantage of the approach proposed is its simplicity and flexibility. It can be applied to a wide class of sampling designs and can be implemented with standard statistical regression techniques. Because of its flexibility, the approach proposed is well suited for the estimation of variance for the European Union Statistics on Income and Living Conditions surveys. It allows us to use a common approach for variance estimation for the different types of design. The approach proposed is a useful tool, because it involves only modelling skills and requires limited knowledge of survey sampling theory

    On Improvement in Estimating Population Parameter(s) Using Auxiliary Information

    Get PDF
    The purpose of writing this book is to suggest some improved estimators using auxiliary information in sampling schemes like simple random sampling and systematic sampling. This volume is a collection of five papers. The following problems have been discussed in the book: In chapter one an estimator in systematic sampling using auxiliary information is studied in the presence of non-response. In second chapter some improved estimators are suggested using auxiliary information. In third chapter some improved ratio-type estimators are suggested and their properties are studied under second order of approximation. In chapter four and five some estimators are proposed for estimating unknown population parameter(s) and their properties are studied. This book will be helpful for the researchers and students who are working in the field of finite population estimation.Comment: 63 pages, 8 tables. Educational Publishing & Journal of Matter Regularity (Beijing

    Properties of Design-Based Functional Principal Components Analysis

    Full text link
    This work aims at performing Functional Principal Components Analysis (FPCA) with Horvitz-Thompson estimators when the observations are curves collected with survey sampling techniques. One important motivation for this study is that FPCA is a dimension reduction tool which is the first step to develop model assisted approaches that can take auxiliary information into account. FPCA relies on the estimation of the eigenelements of the covariance operator which can be seen as nonlinear functionals. Adapting to our functional context the linearization technique based on the influence function developed by Deville (1999), we prove that these estimators are asymptotically design unbiased and consistent. Under mild assumptions, asymptotic variances are derived for the FPCA' estimators and consistent estimators of them are proposed. Our approach is illustrated with a simulation study and we check the good properties of the proposed estimators of the eigenelements as well as their variance estimators obtained with the linearization approach.Comment: Revised version for J. of Statistical Planning and Inference (January 2009

    Confidence bands for Horvitz-Thompson estimators using sampled noisy functional data

    Full text link
    When collections of functional data are too large to be exhaustively observed, survey sampling techniques provide an effective way to estimate global quantities such as the population mean function. Assuming functional data are collected from a finite population according to a probabilistic sampling scheme, with the measurements being discrete in time and noisy, we propose to first smooth the sampled trajectories with local polynomials and then estimate the mean function with a Horvitz-Thompson estimator. Under mild conditions on the population size, observation times, regularity of the trajectories, sampling scheme, and smoothing bandwidth, we prove a Central Limit theorem in the space of continuous functions. We also establish the uniform consistency of a covariance function estimator and apply the former results to build confidence bands for the mean function. The bands attain nominal coverage and are obtained through Gaussian process simulations conditional on the estimated covariance function. To select the bandwidth, we propose a cross-validation method that accounts for the sampling weights. A simulation study assesses the performance of our approach and highlights the influence of the sampling scheme and bandwidth choice.Comment: Published in at http://dx.doi.org/10.3150/12-BEJ443 the Bernoulli (http://isi.cbs.nl/bernoulli/) by the International Statistical Institute/Bernoulli Society (http://isi.cbs.nl/BS/bshome.htm

    Coupling methods for multistage sampling

    Full text link
    Multistage sampling is commonly used for household surveys when there exists no sampling frame, or when the population is scattered over a wide area. Multistage sampling usually introduces a complex dependence in the selection of the final units, which makes asymptotic results quite difficult to prove. In this work, we consider multistage sampling with simple random without replacement sampling at the first stage, and with an arbitrary sampling design for further stages. We consider coupling methods to link this sampling design to sampling designs where the primary sampling units are selected independently. We first generalize a method introduced by [Magyar Tud. Akad. Mat. Kutat\'{o} Int. K\"{o}zl. 5 (1960) 361-374] to get a coupling with multistage sampling and Bernoulli sampling at the first stage, which leads to a central limit theorem for the Horvitz--Thompson estimator. We then introduce a new coupling method with multistage sampling and simple random with replacement sampling at the first stage. When the first-stage sampling fraction tends to zero, this method is used to prove consistency of a with-replacement bootstrap for simple random without replacement sampling at the first stage, and consistency of bootstrap variance estimators for smooth functions of totals.Comment: Published at http://dx.doi.org/10.1214/15-AOS1348 in the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org
    • 

    corecore