849 research outputs found

    Estimation of Parent Specific DNA Copy Number in Tumors using High-Density Genotyping Arrays

    Get PDF
    Chromosomal gains and losses comprise an important type of genetic change in tumors, and can now be assayed using microarray hybridization-based experiments. Most current statistical models for DNA copy number estimate total copy number, which do not distinguish between the underlying quantities of the two inherited chromosomes. This latter information, sometimes called parent specific copy number, is important for identifying allele-specific amplifications and deletions, for quantifying normal cell contamination, and for giving a more complete molecular portrait of the tumor. We propose a stochastic segmentation model for parent-specific DNA copy number in tumor samples, and give an estimation procedure that is computationally efficient and can be applied to data from the current high density genotyping platforms. The proposed method does not require matched normal samples, and can estimate the unknown genotypes simultaneously with the parent specific copy number. The new method is used to analyze 223 glioblastoma samples from the Cancer Genome Atlas (TCGA) project, giving a more comprehensive summary of the copy number events in these samples. Detailed case studies on these samples reveal the additional insights that can be gained from an allele-specific copy number analysis, such as the quantification of fractional gains and losses, the identification of copy neutral loss of heterozygosity, and the characterization of regions of simultaneous changes of both inherited chromosomes

    Accurate estimation of homologue-specific DNA concentration-ratios in cancer samples allows long-range haplotyping

    Get PDF
    Interpretation of allelic copy measurements at polymorphic markers in cancer samples presents distinctive challenges and opportunities. Due to frequent gross chromosomal alterations occurring in cancer (aneuploidy), many genomic regions are present at homologous-allele imbalance. Within such regions, the unequal contribution of alleles at heterozygous markers allows for direct phasing of the haplotype derived from each individual parent. In addition, genome-wide estimates of homologue specific copy- ratios (HSCRs) are important for interpretation of the cancer genome in terms of fixed integral copy-numbers. We describe HAPSEG, a probabilistic method to interpret bi- allelic marker data in cancer samples. HAPSEG operates by partitioning the genome into segments of distinct copy number and modeling the four distinct genotypes in each segment. We describe general methods for fitting these models to data which are suit- able for both SNP microarrays and massively parallel sequencing data. In addition, we demonstrate a specially tailored error-model for interpretation of systematic variations arising in microarray platforms. The ability to directly determine haplotypes from cancer samples represents an opportunity to expand reference panels of phased chromosomes, which may have general interest in various population genetic applications. In addition, this property may be exploited to interrogate the relationship between germline risk and cancer phenotype with greater sensitivity than is possible using unphased genotype. Finally, we exploit the statistical dependency of phased genotypes to enable the fitting of more elaborate sample-level error-model parameters, allowing more accurate estimation of HSCRs in cancer samples

    Allele-specific copy number analysis of tumor samples with aneuploidy and tumor heterogeneity

    Get PDF
    We describe a bioinformatic tool, Tumor Aberration Prediction Suite (TAPS), for the identification of allele-specific copy numbers in tumor samples using data from Affymetrix SNP arrays. It includes detailed visualization of genomic segment characteristics and iterative pattern recognition for copy number identification, and does not require patient-matched normal samples. TAPS can be used to identify chromosomal aberrations with high sensitivity even when the proportion of tumor cells is as low as 30%. Analysis of cancer samples indicates that TAPS is well suited to investigate samples with aneuploidy and tumor heterogeneity, which is commonly found in many types of solid tumors

    An integrated Bayesian analysis of LOH and copy number data

    Get PDF
    BACKGROUND Cancer and other disorders are due to genomic lesions. SNP-microarrays are able to measure simultaneously both genotype and copy number (CN) at several Single Nucleotide Polymorphisms (SNPs) along the genome. CN is defined as the number of DNA copies, and the normal is two, since we have two copies of each chromosome. The genotype of a SNP is the status given by the nucleotides (alleles) which are present on the two copies of DNA. It is defined homozygous or heterozygous if the two alleles are the same or if they differ, respectively. Loss of heterozygosity (LOH) is the loss of the heterozygous status due to genomic events. Combining CN and LOH data, it is possible to better identify different types of genomic aberrations. For example, a long sequence of homozygous SNPs might be caused by either the physical loss of one copy or a uniparental disomy event (UPD), i.e. each SNP has two identical nucleotides both derived from only one parent. In this situation, the knowledge of the CN can help in distinguishing between these two events. RESULTS To better identify genomic aberrations, we propose a method (called gBPCR) which infers the type of aberration occurred, taking into account all the possible influence in the microarray detection of the homozygosity status of the SNPs, resulting from an altered CN level. Namely, we model the distributions of the detected genotype, given a specific genomic alteration and we estimate the parameters involved on public reference datasets. The estimation is performed similarly to the modified Bayesian Piecewise Constant Regression, but with improved estimators for the detection of the breakpoints.Using artificial and real data, we evaluate the quality of the estimation of gBPCR and we also show that it outperforms other well-known methods for LOH estimation. CONCLUSIONS We propose a method (gBPCR) for the estimation of both LOH and CN aberrations, improving their estimation by integrating both types of data and accounting for their relationships. Moreover, gBPCR performed very well in comparison with other methods for LOH estimation and the estimated CN lesions on real data have been validated with another technique.This work was supported by Swiss National Science Foundation (grants 205321-112430, 205320-121886/1); Oncosuisse grants OCS-1939-8-2006 and OCS - 02296-08-2008; Cantone Ticino ("Computational life science/Ticino in rete” program); Fondazione per la Ricerca e la Cura sui Linfomi (Lugano, Switzerland)

    Allele-Specific Amplification in Cancer Revealed by SNP Array Analysis

    Get PDF
    Amplification, deletion, and loss of heterozygosity of genomic DNA are hallmarks of cancer. In recent years a variety of studies have emerged measuring total chromosomal copy number at increasingly high resolution. Similarly, loss-of-heterozygosity events have been finely mapped using high-throughput genotyping technologies. We have developed a probe-level allele-specific quantitation procedure that extracts both copy number and allelotype information from single nucleotide polymorphism (SNP) array data to arrive at allele-specific copy number across the genome. Our approach applies an expectation-maximization algorithm to a model derived from a novel classification of SNP array probes. This method is the first to our knowledge that is able to (a) determine the generalized genotype of aberrant samples at each SNP site (e.g., CCCCT at an amplified site), and (b) infer the copy number of each parental chromosome across the genome. With this method, we are able to determine not just where amplifications and deletions occur, but also the haplotype of the region being amplified or deleted. The merit of our model and general approach is demonstrated by very precise genotyping of normal samples, and our allele-specific copy number inferences are validated using PCR experiments. Applying our method to a collection of lung cancer samples, we are able to conclude that amplification is essentially monoallelic, as would be expected under the mechanisms currently believed responsible for gene amplification. This suggests that a specific parental chromosome may be targeted for amplification, whether because of germ line or somatic variation. An R software package containing the methods described in this paper is freely available at http://genome.dfci.harvard.edu/~tlaframb/PLASQ

    Reconstructing DNA copy number by joint segmentation of multiple sequences

    Get PDF
    The variation in DNA copy number carries information on the modalities of genome evolution and misregulation of DNA replication in cancer cells; its study can be helpful to localize tumor suppressor genes, distinguish different populations of cancerous cell, as well identify genomic variations responsible for disease phenotypes. A number of different high throughput technologies can be used to identify copy number variable sites, and the literature documents multiple effective algorithms. We focus here on the specific problem of detecting regions where variation in copy number is relatively common in the sample at hand: this encompasses the cases of copy number polymorphisms, related samples, technical replicates, and cancerous sub-populations from the same individual. We present an algorithm based on regularization approaches with significant computational advantages and competitive accuracy. We illustrate its applicability with simulated and real data sets.Comment: 54 pages, 5 figure

    Performance evaluation of DNA copy number segmentation methods

    Full text link
    A number of bioinformatic or biostatistical methods are available for analyzing DNA copy number profiles measured from microarray or sequencing technologies. In the absence of rich enough gold standard data sets, the performance of these methods is generally assessed using unrealistic simulation studies, or based on small real data analyses. We have designed and implemented a framework to generate realistic DNA copy number profiles of cancer samples with known truth. These profiles are generated by resampling real SNP microarray data from genomic regions with known copy-number state. The original real data have been extracted from dilutions series of tumor cell lines with matched blood samples at several concentrations. Therefore, the signal-to-noise ratio of the generated profiles can be controlled through the (known) percentage of tumor cells in the sample. In this paper, we describe this framework and illustrate some of the benefits of the proposed data generation approach on a practical use case: a comparison study between methods for segmenting DNA copy number profiles from SNP microarrays. This study indicates that no single method is uniformly better than all others. It also helps identifying pros and cons for the compared methods as a function of biologically informative parameters, such as the fraction of tumor cells in the sample and the proportion of heterozygous markers. Availability: R package jointSeg: http://r-forge.r-project.org/R/?group\_id=156

    Allele-Specific Copy Number Profiling by Next-Generation DNA Sequencing

    Get PDF
    The progression and clonal development of tumors often involve amplifications and deletions of genomic DNA. Estimation of allele-specific copy number, which quantifies the number of copies of each allele at each variant loci rather than the total number of chromosome copies, is an important step in the characterization of tumor genomes and the inference of their clonal history. We describe a new method, Falcon, for finding somatic allele-specific copy number changes by next generation sequencing of tumors with matched normals. Falcon is based on a change-point model on a bivariate mixed Binomial process, which explicitly models the copy numbers of the two chromosome haplotypes and corrects for local allele-specific coverage biases. By using the Binomial distribution rather than a normal approximation, Falcon more effectively pools evidence from sites with low coverage. A modified Bayesian information criterion is used to guide model selection for determining the number of copy number events. Falcon is evaluated on in silico spike-in data and applied to the analysis of a pre-malignant colon tumor sample and late-stage colorectal adenocarcinoma from the same individual. The allele-specific copy number estimates obtained by Falcon allows us to draw detailed conclusions regarding the clonal history of the individual\u27s colon cancer

    Integrated study of copy number states and genotype calls using high-density SNP arrays

    Get PDF
    We propose a statistical framework, named genoCN, to simultaneously dissect copy number states and genotypes using high-density SNP (single nucleotide polymorphism) arrays. There are at least two types of genomic DNA copy number differences: copy number variations (CNVs) and copy number aberrations (CNAs). While CNVs are naturally occurring and inheritable, CNAs are acquired somatic alterations most often observed in tumor tissues only. CNVs tend to be short and more sparsely located in the genome compared with CNAs. GenoCN consists of two components, genoCNV and genoCNA, designed for CNV and CNA studies, respectively. In contrast to most existing methods, genoCN is more flexible in that the model parameters are estimated from the data instead of being decided a priori. GenoCNA also incorporates two important strategies for CNA studies. First, the effects of tissue contamination are explicitly modeled. Second, if SNP arrays are performed for both tumor and normal tissues of one individual, the genotype calls from normal tissue are used to study CNAs in tumor tissue. We evaluated genoCN by applications to 162 HapMap individuals and a brain tumor (glioblastoma) dataset and showed that our method can successfully identify both types of copy number differences and produce high-quality genotype calls
    corecore