18,540 research outputs found

    A recent electronic control circuit to a throttle device

    Get PDF
    The main objective of this paper is to conceive a recent electronic control circuit to the throttle device. The throttle mechanical actuator is the most important part in an automotive gasoline engine. Among the different control strategies recently reported, an easy to implement control scheme is an open research topic in the analog electronic engineering field. Hence, by using the nonlinear dwell switching control theory, an analog electronic control unit is proposed to manipulate an automotive throttle plate. Due to the switching mechanism is commuting between a stable and an unstable controllers, the resultant closed-loop system is enough robust to the control objective This fact is experimentally evidenced. The proposed electronic controller uses operational amplifiers along with an Arduino unit. This unit is just employed to generate the related switching signal that can be replaced by using, for instance, the timer IC555. Thus, this study is a contribution on design and realization of an electronic control circuit to the throttle device.Peer ReviewedPostprint (published version

    UltraSwarm: A Further Step Towards a Flock of Miniature Helicopters

    Get PDF
    We describe further progress towards the development of a MAV (micro aerial vehicle) designed as an enabling tool to investigate aerial flocking. Our research focuses on the use of low cost off the shelf vehicles and sensors to enable fast prototyping and to reduce development costs. Details on the design of the embedded electronics and the modification of the chosen toy helicopter are presented, and the technique used for state estimation is described. The fusion of inertial data through an unscented Kalman filter is used to estimate the helicopter’s state, and this forms the main input to the control system. Since no detailed dynamic model of the helicopter in use is available, a method is proposed for automated system identification, and for subsequent controller design based on artificial evolution. Preliminary results obtained with a dynamic simulator of a helicopter are reported, along with some encouraging results for tackling the problem of flocking

    Control optimization, stabilization and computer algorithms for aircraft applications

    Get PDF
    The analysis and design of complex multivariable reliable control systems are considered. High performance and fault tolerant aircraft systems are the objectives. A preliminary feasibility study of the design of a lateral control system for a VTOL aircraft that is to land on a DD963 class destroyer under high sea state conditions is provided. Progress in the following areas is summarized: (1) VTOL control system design studies; (2) robust multivariable control system synthesis; (3) adaptive control systems; (4) failure detection algorithms; and (5) fault tolerant optimal control theory
    • …
    corecore