3,016 research outputs found

    Full-automatic recognition of various parking slot markings using a hierarchical tree structure

    Get PDF
    A full-automatic method for recognizing parking slot markings is proposed. The proposed method recognizes various types of parking slot markings by modeling them as a hierarchical tree structure. This method mainly consists of two processes: bottom-up and top-down. First, the bottom-up process climbs up the hierarchical tree structure to excessively generate parking slot candidates so as not to lose the correct slots. This process includes corner detection, junction and slot generation, and type selection procedures. After that, the top-down process confirms the final parking slots by eliminating falsely generated slots, junctions, and corners based on the properties of the parking slot marking type by climbing down the hierarchical tree structure. The proposed method was evaluated in 608 real-world parking situations encompassing a variety of different parking slot markings. The experimental result reveals that the proposed method outperforms the previous semiautomatic method while requiring a small amount of computational costs even though it is fully automatic

    Integrated sensors for robotic laser welding

    Get PDF
    A welding head is under development with integrated sensory systems for robotic laser welding applications. Robotic laser welding requires sensory systems that are capable to accurately guide the welding head over a seam in three-dimensional space and provide information about the welding process as well as the quality of the welding result. In this paper the focus is on seam tracking. It is difficult to measure three-dimensional parameters of a ream during a robotic laser welding task, especially when sharp corners are present. The proposed sensory system is capable to provide the three dimensional parameters of a seam in one measurement and guide robots over sharp corners

    Trifocal Relative Pose from Lines at Points and its Efficient Solution

    Full text link
    We present a new minimal problem for relative pose estimation mixing point features with lines incident at points observed in three views and its efficient homotopy continuation solver. We demonstrate the generality of the approach by analyzing and solving an additional problem with mixed point and line correspondences in three views. The minimal problems include correspondences of (i) three points and one line and (ii) three points and two lines through two of the points which is reported and analyzed here for the first time. These are difficult to solve, as they have 216 and - as shown here - 312 solutions, but cover important practical situations when line and point features appear together, e.g., in urban scenes or when observing curves. We demonstrate that even such difficult problems can be solved robustly using a suitable homotopy continuation technique and we provide an implementation optimized for minimal problems that can be integrated into engineering applications. Our simulated and real experiments demonstrate our solvers in the camera geometry computation task in structure from motion. We show that new solvers allow for reconstructing challenging scenes where the standard two-view initialization of structure from motion fails.Comment: This material is based upon work supported by the National Science Foundation under Grant No. DMS-1439786 while most authors were in residence at Brown University's Institute for Computational and Experimental Research in Mathematics -- ICERM, in Providence, R

    Sensor integration for robotic laser welding processes

    Get PDF
    The use of robotic laser welding is increasing among industrial applications, because of its ability to weld objects in three dimensions. Robotic laser welding involves three sub-processes: seam detection and tracking, welding process control, and weld seam inspection. Usually, for each sub-process, a separate sensory system is required. The use of separate sensory systems leads to heavy and bulky tools, in contrast to compact and light sensory systems that are needed to reach sufficient accuracy and accessibility. In the solution presented in this paper all three subprocesses are integrated in one compact multipurpose welding head. This multi-purpose tool is under development and consists of a laser welding head, with integrated sensors for seam detection and inspection, while also carrying interfaces for process control. It can provide the relative position of the tool and the work piece in three-dimensional space. Additionally, it can cope with the occurrence of sharp corners along a three-dimensional weld path, which are difficult to detect and weld with conventional equipment due to measurement errors and robot dynamics. In this paper the process of seam detection will be mainly elaborated

    Dense Piecewise Planar RGB-D SLAM for Indoor Environments

    Full text link
    The paper exploits weak Manhattan constraints to parse the structure of indoor environments from RGB-D video sequences in an online setting. We extend the previous approach for single view parsing of indoor scenes to video sequences and formulate the problem of recovering the floor plan of the environment as an optimal labeling problem solved using dynamic programming. The temporal continuity is enforced in a recursive setting, where labeling from previous frames is used as a prior term in the objective function. In addition to recovery of piecewise planar weak Manhattan structure of the extended environment, the orthogonality constraints are also exploited by visual odometry and pose graph optimization. This yields reliable estimates in the presence of large motions and absence of distinctive features to track. We evaluate our method on several challenging indoors sequences demonstrating accurate SLAM and dense mapping of low texture environments. On existing TUM benchmark we achieve competitive results with the alternative approaches which fail in our environments.Comment: International Conference on Intelligent Robots and Systems (IROS) 201

    Structured Indoor Modeling

    Get PDF
    In this dissertation, we propose data-driven approaches to reconstruct 3D models for indoor scenes which are represented in a structured way (e.g., a wall is represented by a planar surface and two rooms are connected via the wall). The structured representation of models is more application ready than dense representations (e.g., a point cloud), but poses additional challenges for reconstruction since extracting structures requires high-level understanding about geometries. To address this challenging problem, we explore two common structural regularities of indoor scenes: 1) most indoor structures consist of planar surfaces (planarity), and 2) structural surfaces (e.g., walls and floor) can be represented by a 2D floorplan as a top-down view projection (orthogonality). With breakthroughs in data capturing techniques, we develop automated systems to tackle structured modeling problems, namely piece-wise planar reconstruction and floorplan reconstruction, by learning shape priors (i.e., planarity and orthogonality) from data. With structured representations and production-level quality, the reconstructed models have an immediate impact on many industrial applications

    Analysis of Optimization Methods in Multisteerable Filter Design

    Get PDF
    The purpose of this thesis is to study and investigate a practical and efficient implementation of corner orientation detection using multisteerable filters. First, practical theory involved in applying multisteerable filters for corner orientation estimation is presented. Methods to improve the efficiency with which multisteerable corner filters are applied to images are investigated and presented. Prior research in this area presented an optimization equation for determining the best match of corner orientations in images; however, little research has been done on optimization techniques to solve this equation. Optimization techniques to find the maximum response of a similarity function to determine how similar a corner feature is to a multioriented corner template are also explored and compared in this research

    Adaptive morphological filters based on a multiple orientation vector field dependent on image local features

    Get PDF
    This paper addresses the formulation of adaptive morphological filters based on spatially-variant structuring elements. The adaptivity of these filters is achieved by modifying the shape and orientation of the structuring elements according to a multiple orientation vector field. This vector field is provided by means of a bank of directional openings which can take into account the possible multiple orientations of the contours in the image. After reviewing and formalizing the definition of the spatially-variant dilation, erosion, opening and closing, the proposed structuring elements are described. These spatially-variant structuring elements are based on ellipses which vary over the image domain adapting locally their orientation according to the multiple orientation vector field and their shape (the eccentricity of the ellipses) according to the distance to relevant contours of the objects. The proposed adaptive morphological filters are used on gray-level images and are compared with spatially-invariant filters, with spatially-variant filters based on a single orientation vector field, and with adaptive morphological bilateral filters. Results show that the morphological filters based on a multiple orientation vector field are more adept at enhancing and preserving structures which contains more than one orientation
    corecore