564 research outputs found

    Computer Control: An Overview

    Get PDF
    Computer control is entering all facets of life from home electronics to production of different products and material. Many of the computers are embedded and thus ``hidden'' for the user. In many situations it is not necessary to know anything about computer control or real-time systems to implement a simple controller. There are, however, many situations where the result will be much better when the sampled-data aspects of the system are taken into consideration when the controller is designed. Also, it is very important that the real-time aspects are regarded. The real-time system influences the timing in the computer and can thus minimize latency and delays in the feedback controller. The paper introduces different aspects of computer-controlled systems from simple approximation of continuous time controllers to design aspects of optimal sampled-data controllers. We also point out some of the pitfalls of computer control and discusses the practical aspects as well as the implementation issues of computer control. Published as a Professional Briefs by IFAC

    Stochastic Event-Based Control and Estimation

    Get PDF
    Digital controllers are traditionally implemented using periodic sampling, computation, and actuation events. As more control systems are implemented to share limited network and CPU bandwidth with other tasks, it is becoming increasingly attractive to use some form of event-based control instead, where precious events are used only when needed. Forms of event-based control have been used in practice for a very long time, but mostly in an ad-hoc way. Though optimal solutions to most event-based control problems are unknown, it should still be viable to compare performance between suggested approaches in a reasonable manner. This thesis investigates an event-based variation on the stochastic linear-quadratic (LQ) control problem, with a fixed cost per control event. The sporadic constraint of an enforced minimum inter-event time is introduced, yielding a mixed continuous-/discrete-time formulation. The quantitative trade-off between event rate and control performance is compared between periodic and sporadic control. Example problems for first-order plants are investigated, for a single control loop and for multiple loops closed over a shared medium. Path constraints are introduced to model and analyze higher-order event-based control systems. This component-based approach to stochastic hybrid systems allows to express continuous- and discrete-time dynamics, state and switching constraints, control laws, and stochastic disturbances in the same model. Sum-of-squares techniques are then used to find bounds on control objectives using convex semidefinite programming. The thesis also considers state estimation for discrete time linear stochastic systems from measurements with convex set uncertainty. The Bayesian observer is considered given log-concave process disturbances and measurement likelihoods. Strong log-concavity is introduced, and it is shown that the observer preserves log-concavity, and propagates strong log-concavity like inverse covariance in a Kalman filter. A recursive state estimator is developed for systems with both stochastic and set-bounded process and measurement noise terms. A time-varying linear filter gain is optimized using convex semidefinite programming and ellipsoidal over-approximation, given a relative weight on the two kinds of error

    Modelling for Control of Free Molecular Flow Processes

    Get PDF

    On Approximation of Linear Network Systems

    Get PDF
    corecore