7,134 research outputs found

    Hidden Markov Models for Pipeline Damage Detection Using Piezoelectric Transducers

    Full text link
    Oil and gas pipeline leakages lead to not only enormous economic loss but also environmental disasters. How to detect the pipeline damages including leakages and cracks has attracted much research attention. One of the promising leakage detection method is to use lead zirconate titanate (PZT) transducers to detect the negative pressure wave when leakage occurs. PZT transducers can generate and detect guided stress waves for crack detection also. However, the negative pressure waves or guided stress waves may not be easily detected with environmental interference, e.g., the oil and gas pipelines in offshore environment. In this paper, a Gaussian mixture model based hidden Markov model (GMM-HMM) method is proposed to detect the pipeline leakage and crack depth in changing environment and time-varying operational conditions. Leakages in different sections or crack depths are considered as different states in hidden Markov models (HMM). Laboratory experiments show that the GMM-HMM method can recognize the crack depth and leakage of pipeline such as whether there is a leakage, where the leakage is

    Increasing Flash Memory Lifetime by Dynamic Voltage Allocation for Constant Mutual Information

    Full text link
    The read channel in Flash memory systems degrades over time because the Fowler-Nordheim tunneling used to apply charge to the floating gate eventually compromises the integrity of the cell because of tunnel oxide degradation. While degradation is commonly measured in the number of program/erase cycles experienced by a cell, the degradation is proportional to the number of electrons forced into the floating gate and later released by the erasing process. By managing the amount of charge written to the floating gate to maintain a constant read-channel mutual information, Flash lifetime can be extended. This paper proposes an overall system approach based on information theory to extend the lifetime of a flash memory device. Using the instantaneous storage capacity of a noisy flash memory channel, our approach allocates the read voltage of flash cell dynamically as it wears out gradually over time. A practical estimation of the instantaneous capacity is also proposed based on soft information via multiple reads of the memory cells.Comment: 5 pages. 5 figure

    Compressive sensing based Bayesian sparse channel estimation for OFDM communication systems: high performance and low complexity

    Full text link
    In orthogonal frequency division modulation (OFDM) communication systems, channel state information (CSI) is required at receiver due to the fact that frequency-selective fading channel leads to disgusting inter-symbol interference (ISI) over data transmission. Broadband channel model is often described by very few dominant channel taps and they can be probed by compressive sensing based sparse channel estimation (SCE) methods, e.g., orthogonal matching pursuit algorithm, which can take the advantage of sparse structure effectively in the channel as for prior information. However, these developed methods are vulnerable to both noise interference and column coherence of training signal matrix. In other words, the primary objective of these conventional methods is to catch the dominant channel taps without a report of posterior channel uncertainty. To improve the estimation performance, we proposed a compressive sensing based Bayesian sparse channel estimation (BSCE) method which can not only exploit the channel sparsity but also mitigate the unexpected channel uncertainty without scarifying any computational complexity. The propose method can reveal potential ambiguity among multiple channel estimators that are ambiguous due to observation noise or correlation interference among columns in the training matrix. Computer simulations show that propose method can improve the estimation performance when comparing with conventional SCE methods.Comment: 24 pages,16 figures, submitted for a journa

    Thermometry of ultracold atoms via non-equilibrium work distributions

    Get PDF
    Estimating the temperature of a cold quantum system is difficult. Usually, one measures a well-understood thermal state and uses that prior knowledge to infer its temperature. In contrast, we introduce a method of thermometry that assumes minimal knowledge of the state of a system and is potentially non-destructive. Our method uses a universal temperature-dependence of the quench dynamics of an initially thermal system coupled to a qubit probe that follows from the Tasaki-Crooks theorem for non-equilibrium work distributions. We provide examples for a cold-atom system, in which our thermometry protocol may retain accuracy and precision at subnanokelvin temperatures.Comment: Updated to published version. 6 pages plus 11 pages of supplemental material, and some numerical dat
    • …
    corecore