2,422 research outputs found

    Estimation of Laplacian spectra of direct and strong product graphs

    Full text link
    Calculating a product of multiple graphs has been studied in mathematics, engineering, computer science, and more recently in network science, particularly in the context of multilayer networks. One of the important questions to be addressed in this area is how to characterize spectral properties of a product graph using those of its factor graphs. While several such characterizations have already been obtained analytically (mostly for adjacency spectra), characterization of Laplacian spectra of direct product and strong product graphs has remained an open problem. Here we develop practical methods to estimate Laplacian spectra of direct and strong product graphs from spectral properties of their factor graphs using a few heuristic assumptions. Numerical experiments showed that the proposed methods produced reasonable estimation with percentage errors confined within a +/-10% range for most eigenvalues.Comment: 14 pages, 7 figures; to be published in Discrete Applied Mathematic

    Estimation from Pairwise Comparisons: Sharp Minimax Bounds with Topology Dependence

    Full text link
    Data in the form of pairwise comparisons arises in many domains, including preference elicitation, sporting competitions, and peer grading among others. We consider parametric ordinal models for such pairwise comparison data involving a latent vector w∗∈Rdw^* \in \mathbb{R}^d that represents the "qualities" of the dd items being compared; this class of models includes the two most widely used parametric models--the Bradley-Terry-Luce (BTL) and the Thurstone models. Working within a standard minimax framework, we provide tight upper and lower bounds on the optimal error in estimating the quality score vector w∗w^* under this class of models. The bounds depend on the topology of the comparison graph induced by the subset of pairs being compared via its Laplacian spectrum. Thus, in settings where the subset of pairs may be chosen, our results provide principled guidelines for making this choice. Finally, we compare these error rates to those under cardinal measurement models and show that the error rates in the ordinal and cardinal settings have identical scalings apart from constant pre-factors.Comment: 39 pages, 5 figures. Significant extension of arXiv:1406.661

    Graph product multilayer networks: spectral properties and applications

    Get PDF
    This article aims to establish theoretical foundations of graph product multilayer networks (GPMNs), a family of multilayer networks that can be obtained as a graph product of two or more factor networks. Cartesian, direct (tensor), and strong product operators are considered, and then generalized. We first describe mathematical relationships between GPMNs and their factor networks regarding their degree/strength, adjacency, and Laplacian spectra, and then show that those relationships can still hold for non-simple and generalized GPMNs. Applications of GPMNs are discussed in three areas: predicting epidemic thresholds, modelling propagation in non-trivial space and time, and analysing higher-order properties of self-similar networks. Directions of future research are also discussed

    Forecasting Time Series with VARMA Recursions on Graphs

    Full text link
    Graph-based techniques emerged as a choice to deal with the dimensionality issues in modeling multivariate time series. However, there is yet no complete understanding of how the underlying structure could be exploited to ease this task. This work provides contributions in this direction by considering the forecasting of a process evolving over a graph. We make use of the (approximate) time-vertex stationarity assumption, i.e., timevarying graph signals whose first and second order statistical moments are invariant over time and correlated to a known graph topology. The latter is combined with VAR and VARMA models to tackle the dimensionality issues present in predicting the temporal evolution of multivariate time series. We find out that by projecting the data to the graph spectral domain: (i) the multivariate model estimation reduces to that of fitting a number of uncorrelated univariate ARMA models and (ii) an optimal low-rank data representation can be exploited so as to further reduce the estimation costs. In the case that the multivariate process can be observed at a subset of nodes, the proposed models extend naturally to Kalman filtering on graphs allowing for optimal tracking. Numerical experiments with both synthetic and real data validate the proposed approach and highlight its benefits over state-of-the-art alternatives.Comment: submitted to the IEEE Transactions on Signal Processin

    Graph Signal Processing: Overview, Challenges and Applications

    Full text link
    Research in Graph Signal Processing (GSP) aims to develop tools for processing data defined on irregular graph domains. In this paper we first provide an overview of core ideas in GSP and their connection to conventional digital signal processing. We then summarize recent developments in developing basic GSP tools, including methods for sampling, filtering or graph learning. Next, we review progress in several application areas using GSP, including processing and analysis of sensor network data, biological data, and applications to image processing and machine learning. We finish by providing a brief historical perspective to highlight how concepts recently developed in GSP build on top of prior research in other areas.Comment: To appear, Proceedings of the IEE

    Eigenvalues and the diameter of graphs

    Get PDF
    Graphs;Eigenvalues

    Sampling and Reconstruction of Sparse Signals on Circulant Graphs - An Introduction to Graph-FRI

    Full text link
    With the objective of employing graphs toward a more generalized theory of signal processing, we present a novel sampling framework for (wavelet-)sparse signals defined on circulant graphs which extends basic properties of Finite Rate of Innovation (FRI) theory to the graph domain, and can be applied to arbitrary graphs via suitable approximation schemes. At its core, the introduced Graph-FRI-framework states that any K-sparse signal on the vertices of a circulant graph can be perfectly reconstructed from its dimensionality-reduced representation in the graph spectral domain, the Graph Fourier Transform (GFT), of minimum size 2K. By leveraging the recently developed theory of e-splines and e-spline wavelets on graphs, one can decompose this graph spectral transformation into the multiresolution low-pass filtering operation with a graph e-spline filter, and subsequent transformation to the spectral graph domain; this allows to infer a distinct sampling pattern, and, ultimately, the structure of an associated coarsened graph, which preserves essential properties of the original, including circularity and, where applicable, the graph generating set.Comment: To appear in Appl. Comput. Harmon. Anal. (2017
    • 

    corecore