1,818 research outputs found

    Approximate Profile Maximum Likelihood

    Full text link
    We propose an efficient algorithm for approximate computation of the profile maximum likelihood (PML), a variant of maximum likelihood maximizing the probability of observing a sufficient statistic rather than the empirical sample. The PML has appealing theoretical properties, but is difficult to compute exactly. Inspired by observations gleaned from exactly solvable cases, we look for an approximate PML solution, which, intuitively, clumps comparably frequent symbols into one symbol. This amounts to lower-bounding a certain matrix permanent by summing over a subgroup of the symmetric group rather than the whole group during the computation. We extensively experiment with the approximate solution, and find the empirical performance of our approach is competitive and sometimes significantly better than state-of-the-art performance for various estimation problems

    Extremal Mechanisms for Local Differential Privacy

    Full text link
    Local differential privacy has recently surfaced as a strong measure of privacy in contexts where personal information remains private even from data analysts. Working in a setting where both the data providers and data analysts want to maximize the utility of statistical analyses performed on the released data, we study the fundamental trade-off between local differential privacy and utility. This trade-off is formulated as a constrained optimization problem: maximize utility subject to local differential privacy constraints. We introduce a combinatorial family of extremal privatization mechanisms, which we call staircase mechanisms, and show that it contains the optimal privatization mechanisms for a broad class of information theoretic utilities such as mutual information and ff-divergences. We further prove that for any utility function and any privacy level, solving the privacy-utility maximization problem is equivalent to solving a finite-dimensional linear program, the outcome of which is the optimal staircase mechanism. However, solving this linear program can be computationally expensive since it has a number of variables that is exponential in the size of the alphabet the data lives in. To account for this, we show that two simple privatization mechanisms, the binary and randomized response mechanisms, are universally optimal in the low and high privacy regimes, and well approximate the intermediate regime.Comment: 52 pages, 10 figures in JMLR 201

    Relative entropy via non-sequential recursive pair substitutions

    Full text link
    The entropy of an ergodic source is the limit of properly rescaled 1-block entropies of sources obtained applying successive non-sequential recursive pairs substitutions (see P. Grassberger 2002 ArXiv:physics/0207023 and D. Benedetto, E. Caglioti and D. Gabrielli 2006 Jour. Stat. Mech. Theo. Exp. 09 doi:10.1088/1742.-5468/2006/09/P09011). In this paper we prove that the cross entropy and the Kullback-Leibler divergence can be obtained in a similar way.Comment: 13 pages , 2 figure
    • …
    corecore