768 research outputs found

    Cascaded 3D Full-body Pose Regression from Single Depth Image at 100 FPS

    Full text link
    There are increasing real-time live applications in virtual reality, where it plays an important role in capturing and retargetting 3D human pose. But it is still challenging to estimate accurate 3D pose from consumer imaging devices such as depth camera. This paper presents a novel cascaded 3D full-body pose regression method to estimate accurate pose from a single depth image at 100 fps. The key idea is to train cascaded regressors based on Gradient Boosting algorithm from pre-recorded human motion capture database. By incorporating hierarchical kinematics model of human pose into the learning procedure, we can directly estimate accurate 3D joint angles instead of joint positions. The biggest advantage of this model is that the bone length can be preserved during the whole 3D pose estimation procedure, which leads to more effective features and higher pose estimation accuracy. Our method can be used as an initialization procedure when combining with tracking methods. We demonstrate the power of our method on a wide range of synthesized human motion data from CMU mocap database, Human3.6M dataset and real human movements data captured in real time. In our comparison against previous 3D pose estimation methods and commercial system such as Kinect 2017, we achieve the state-of-the-art accuracy

    Cognitive Robots for Social Interactions

    Get PDF
    One of my goals is to work towards developing Cognitive Robots, especially with regard to improving the functionalities that facilitate the interaction with human beings and their surrounding objects. Any cognitive system designated for serving human beings must be capable of processing the social signals and eventually enable efficient prediction and planning of appropriate responses. My main focus during my PhD study is to bridge the gap between the motoric space and the visual space. The discovery of the mirror neurons ([RC04]) shows that the visual perception of human motion (visual space) is directly associated to the motor control of the human body (motor space). This discovery poses a large number of challenges in different fields such as computer vision, robotics and neuroscience. One of the fundamental challenges is the understanding of the mapping between 2D visual space and 3D motoric control, and further developing building blocks (primitives) of human motion in the visual space as well as in the motor space. First, I present my study on the visual-motoric mapping of human actions. This study aims at mapping human actions in 2D videos to 3D skeletal representation. Second, I present an automatic algorithm to decompose motion capture (MoCap) sequences into synergies along with the times at which they are executed (or "activated") for each joint. Third, I proposed to use the Granger Causality as a tool to study the coordinated actions performed by at least two units. Recent scientific studies suggest that the above "action mirroring circuit" might be tuned to action coordination rather than single action mirroring. Fourth, I present the extraction of key poses in visual space. These key poses facilitate the further study of the "action mirroring circuit". I conclude the dissertation by describing the future of cognitive robotics study
    • …
    corecore