1,186 research outputs found

    Estimation of Individual Muscular Forces of the Lower Limb during Walking Using a Wearable Sensor System

    Get PDF
    Although various kinds of methodologies have been suggested to estimate individual muscular forces, many of them require a costly measurement system accompanied by complex preprocessing and postprocessing procedures. In this research, a simple wearable sensor system was developed, combined with the inverse dynamics-based static optimization method. The suggested method can be set up easily and can immediately convert motion information into muscular forces. The proposed sensor system consisted of the four inertial measurement units (IMUs) and manually developed ground reaction force sensor to measure the joint angles and ground reaction forces, respectively. To verify performance, the measured data was compared with that of the camera-based motion capture system and a force plate. Based on the motion data, muscular efforts were estimated in the nine muscle groups in the lower extremity using the inverse dynamics-based static optimization. The estimated muscular forces were qualitatively analyzed in the perspective of gait functions and compared with the electromyography signal

    Empowering and assisting natural human mobility: The simbiosis walker

    Get PDF
    This paper presents the complete development of the Simbiosis Smart Walker. The device is equipped with a set of sensor subsystems to acquire user-machine interaction forces and the temporal evolution of user's feet during gait. The authors present an adaptive filtering technique used for the identification and separation of different components found on the human-machine interaction forces. This technique allowed isolating the components related with the navigational commands and developing a Fuzzy logic controller to guide the device. The Smart Walker was clinically validated at the Spinal Cord Injury Hospital of Toledo - Spain, presenting great acceptability by spinal chord injury patients and clinical staf

    Gait Analysis Using Wearable Sensors

    Get PDF
    Gait analysis using wearable sensors is an inexpensive, convenient, and efficient manner of providing useful information for multiple health-related applications. As a clinical tool applied in the rehabilitation and diagnosis of medical conditions and sport activities, gait analysis using wearable sensors shows great prospects. The current paper reviews available wearable sensors and ambulatory gait analysis methods based on the various wearable sensors. After an introduction of the gait phases, the principles and features of wearable sensors used in gait analysis are provided. The gait analysis methods based on wearable sensors is divided into gait kinematics, gait kinetics, and electromyography. Studies on the current methods are reviewed, and applications in sports, rehabilitation, and clinical diagnosis are summarized separately. With the development of sensor technology and the analysis method, gait analysis using wearable sensors is expected to play an increasingly important role in clinical applications
    corecore