3,447 research outputs found

    Non-parametric models in the monitoring of engine performance and condition: Part 2: non-intrusive estimation of diesel engine cylinder pressure and its use in fault detection

    Get PDF
    An application of the radial basis function model, described in Part 1, is demonstrated on a four-cylinder DI diesel engine with data from a wide range of speed and load settings. The prediction capabilities of the trained model are validated against measured data and an example is given of the application of this model to the detection of a slight fault in one of the cylinders

    Modeling and Real-Time Scheduling of DC Platform Supply Vessel for Fuel Efficient Operation

    Full text link
    DC marine architecture integrated with variable speed diesel generators (DGs) has garnered the attention of the researchers primarily because of its ability to deliver fuel efficient operation. This paper aims in modeling and to autonomously perform real-time load scheduling of dc platform supply vessel (PSV) with an objective to minimize specific fuel oil consumption (SFOC) for better fuel efficiency. Focus has been on the modeling of various components and control routines, which are envisaged to be an integral part of dc PSVs. Integration with photovoltaic-based energy storage system (ESS) has been considered as an option to cater for the short time load transients. In this context, this paper proposes a real-time transient simulation scheme, which comprises of optimized generation scheduling of generators and ESS using dc optimal power flow algorithm. This framework considers real dynamics of dc PSV during various marine operations with possible contingency scenarios, such as outage of generation systems, abrupt load changes, and unavailability of ESS. The proposed modeling and control routines with real-time transient simulation scheme have been validated utilizing the real-time marine simulation platform. The results indicate that the coordinated treatment of renewable based ESS with DGs operating with optimized speed yields better fuel savings. This has been observed in improved SFOC operating trajectory for critical marine missions. Furthermore, SFOC minimization at multiple suboptimal points with its treatment in the real-time marine system is also highlighted

    Development of a Torsiometer for On-board Application☆

    Get PDF
    Abstract Modern combustion control strategies require accurate combustion control to meet the requirements for pollutant emissions reduction. Optimal combustion control can be achieved through a closed-loop control based on indicated quantities, such as engine torque and center of combustion, which can be directly calculated through a proper processing of in-cylinder pressure trace. However, on-board installation of in-cylinder pressure sensors is uncommon, mainly because it causes a significant increase in the cost of the whole engine management system. In order to overcome the problems related to the on-board installation of cylinder pressure sensors, this work presents a remote combustion sensing methodology based on the simultaneous processing of two crankshaft speed signals. To maximize the signal-to-noise ratio, each speed measurement has been performed at opposed ends of the crankshaft, i.e. in correspondence of flywheel and distribution wheel. Since an engine speed sensor, usually faced to the flywheel, is already present on-board for other control purposes, the presented approach requires that an additional speed sensor is installed. Proper processing of the signals coming from the installed speed sensors allows extracting information about crankshaft's torsional behavior. Then, the calculated instantaneous crankshaft torsion can be used to real-time estimate both torque delivered by the engine and combustion phasing within the cycle. The presented methodology has been developed and validated using a light-duty L4 Common-Rail Diesel engine mounted in a test cell at University of Bologna. However, the discussed approach is general, and can be applied to engines with a different number of cylinders, both CI and SI

    COMPARATIVE STUDY OF TWO SIMPLE MARINE ENGINE BSFC ESTIMATION METHODS

    Get PDF
    Due to increasingly strict environmental regulations and dwindling oil reserves, fuel consumption and its minimisation play a more and more important role in shipping as well. Based on trends in recent years, the easiest way to solve the problem so far is the so-called "Slow steaming". Other option is the use of alternative fuels, which are increasingly present in shipping with more and more variations. In inland navigation, the above mentioned solutions are also functional, but less achievable. On the one hand, the slower delivery reduces the competitive position of inland navigation in the market, and on the other hand, the number of propulsion systems with alternative fuels are very small in this area. Therefore, the greatest innovation potential can be found in optimising the drive system for minimise the fuel consumption. To do this, the operating profile of the ship being built / built, the parameters influencing the fuel consumption and the more detailed consumption characteristics of the engines need to be known. Many methods have been published in the past decade to determine the latter component. In this research, the authors review the factors influencing fuel consumption of inland navigation, the measurement of fuel consumption and the estimation procedures by any means of transportation based on the literature. They present their modeling results, which are transplanted from several areas into water transport. The proposed methods are validated by engine brake measurements

    Effects of duty cycles on diesel engine component life estimation

    Get PDF
    Engine manufactures have relied on over designed of engines and performance testing to ensure product reliability. The efforts to maximize efficiency and to predict performance characteristics have evoked an interest to study the in-cylinder pressure throughout the respective duty cycle. The duty cycle of an engine is defined as the history of speed and load conditions over which the engine operates in a specific application. Understanding the transient on-road diesel engine duty cycles has been one of major goals for the engine developers. To date there have not been any research performed to identify a wide variety of on-road diesel engine duty cycles. One of the world largest diesel engine manufactures, Cummins Inc., had interest in developing and understanding how the effective life of a diesel engine component is related to its duty cycle. West Virginia University Engine and Emissions Research Laboratory (EERL) was commissioned to conduct this study.;The objective of this study is to create a mathematical model that predicts the effective life of diesel engine components with respect to its operational duty cycle. In particular, power cylinder components were considered along with the variations of in-cylinder pressure. Four different duty cycles were evaluated in this study: a concrete mixer, heavy hauler, dump truck, and a transit bus. In-cylinder pressure data for all four duty cycles were statistically analyzed using the tools from non-parametric function and regression analysis. A mathematical model that predicts the power cylinder component lives was created. Mimicking the infield operation, heavy hauler displays the minimum power cylinder component life, while concrete mixer has the maximum life. Ultimately, this mathematical model will enable the engine manufactures to produce more cost effective components for different duty cycle applications, while fulfilling the customer requirements

    In-Cylinder Pressure Estimation from Rotational Speed Measurements via Extended Kalman Filter

    Get PDF
    Real-time estimation of the in-cylinder pressure of combustion engines is crucial to detect failures and improve the performance of the engine control system. A new estimation scheme is proposed based on the Extended Kalman Filter, which exploits measurements of the engine rotational speed provided by a standard phonic wheel sensor. The main novelty lies in a parameterization of the combustion pressure, which is generated by averaging experimental data collected in different operating points. The proposed approach is validated on real data from a turbocharged compression ignition engine, including both nominal and off-nominal working conditions. The experimental results show that the proposed technique accurately reconstructs the pressure profile, featuring a fit performance index exceeding 90% most of the time. Moreover, it can track changes in the engine operating conditions as well as detect the presence of cylinder-to-cylinder variations

    Monitoring of the piston ring-pack and cylinder liner interface in diesel engines through acoustic emission measurements

    Get PDF
    Investigation of novel condition monitoring systems for diesel engines has received much recent attention due to the increasing demands placed upon engine components and the limitations of conventional techniques. This thesis documents experimental research conducted to assess the monitoring capabilities of Acoustic Emission (AE) analysis. In particular it focuses on the possibility of monitoring the piston ring-pack and cylinder liner interface, a critical engine sub-system for which there are currently few practical monitoring options. A series of experiments were performed on large, two-stroke and small, four-stroke diesel engines. Tests under normal operating conditions developed a detailed understanding of typical AE generation in terms of both the source mechanisms and the characteristics of the resulting activity. This was supplemented by specific tests to investigate possible AE generation at the ring-pack/liner interface. For instance, for the small engines measures were taken to remove known AE sources in order to accentuate any activity originating at the interface whilst for the large engines the interfacial conditions were purposely deteriorated through the removal of the lubricating oil supply to one cylinder. Interpretation of the results was based mainly upon comparisons with published work encompassing both the expected ring-pack behaviour and AE generation from tribological processes. This provided a strong indication that the source of the ring-pack/liner AE activity was the boundary frictional losses. The ability to monitor this process may be of significant benefit to engine operators as it enhances the diagnostic information currently available and may be incorporated into predictive maintenance strategies. A further diagnostic technique considered was the possibility of using AE parameters combined with information of crankshaft speed fluctuations to evaluate engine balance and identify underperforming cylinders.EU Competitive and Sustainable Growth Programme, Project no: GRD2-2001-5001

    Development of an Ammonia Reduction After-Treatment Systems for Stoichiometric Natural Gas Engines

    Get PDF
    Three-way catalyst (TWC) equipped stoichiometric natural gas vehicles have proven to be an effective alternative fuel strategy that shows significant low NOx emissions characteristics. However, recent studies have shown the TWC activity to contribute to elevated levels of tailpipe ammonia (NH 3) emissions. Although a non-regulated pollutant, ammonia is a potent pre-cursor to ambient secondary PM formation. Ammonia is an inevitable byproduct of fuel rich operation that results in lowest NOx slip through the TWC after-treatment system.;The main objective of the study is to develop a passive Ammonia Reduction Catalyst (passive-ARC) based NH3 reduction strategy that results in an overall reduction of ammonia as well as NOx emissions. The study investigated the characteristics of Fe-based and Cu-based zeolites SCR catalysts in storage and desorption of ammonia at high exhaust temperature conditions, that are typical of stoichiometric natural gas engines. Continuous measurements of NOx and NH3 before and after the SCR systems were conducted using a Fourier Transform Infrared Spectrometry (FTIR) gas analyzer. Results of the investigation showed that both, the Fe- and Cu zeolite SCRs adsorbed above 90% of TWC generated NH3 emissions below 350--375 °C SCR temperatures. Desorption or slipping of NH3 was observed at exhaust gas temperatures exceeding 400 °C. In terms of NOx conversions, Fe-zeolite showed efficiency between 50--80% above temperatures of 300--350 °C while Cu-zeolite performed well at lower SCR temperature from 250 °C and above with a conversion efficiency of greater than 50%.;In order to efficiently reduce both NOx and NH3 simultaneously over longer durations it was found that an engine-based air fuel ratio operation strategy for the passive-ARC system must be developed. To this extent, the study extended its objectives to develop an engine-based control strategy that results in stoichiometric ammonia production operation followed by brief lean operation to regenerate the saturated ammonia reduction catalyst using high NOx slip through TWC. The study presents comprehensive results of ammonia storage characteristics of SCRs pertaining to stoichiometric natural gas engine exhaust as well as an advanced engine control strategy approach to simultaneously reduce both NOx and NH3 using an alternating air -fuel ratio approach

    Torque Prediction Model of a CI Engine for Agricultural Purposes Based on Exhaust Gas Temperatures and CFD-FVM Methodologies Validated with Experimental Tests

    Get PDF
    A truly universal system to optimize consumptions, monitor operation and predict maintenance interventions for internal combustion engines must be independent of onboard systems, if present. One of the least invasive methods of detecting engine performance involves the measurement of the exhaust gas temperature (EGT), which can be related to the instant torque through thermodynamic relations. The practical implementation of such a system requires great care since its torque-predictive capabilities are strongly influenced by the position chosen for the temperature-detection point(s) along the exhaust line, specific for each engine, the type of installation for the thermocouples, and the thermal characteristics of the interposed materials. After performing some preliminary tests at the dynamometric brake on a compression-ignition engine for agricultural purposes equipped with three thermocouples at different points in the exhaust duct, a novel procedure was developed to: (1) tune a CFD-FVM-model of the exhaust pipe and determine many unknown thermodynamic parameters concerning the engine (including the real EGT at the exhaust valve outlet in some engine operative conditions), (2) use the CFD-FVM results to considerably increase the predictive capability of an indirect torque-detection strategy based on the EGT. The joint use of the CFD-FVM software, Response Surface Method, and specific optimization algorithms was fundamental to these aims and granted the experimenters a full mastery of systems’ non-linearity and a maximum relative error on the torque estimations of 2.9%

    Development of an Emissions Monitoring Methodology Using On-Board NOx Sensors and Revision to Current In-Use Emissions Regulatory Protocols

    Get PDF
    Measurement of in-use emissions from heavy-duty (HD) vehicles under real-world operation has been widely performed by using portable emissions measurement system (PEMS). PEMS serve as an accurate and lightweight emissions measurement system to evaluate in-use emissions from HD vehicles. However, emissions measurement using PEMS instrumentation can be time consuming and labor intensive. Advantage of utilizing already existing on-board sensors such that they can potentially provide an alternative measurement methodology to the PEMS. A successful implementation of an on-board NOx sensor-based methodology for assessing in-use NOx emissions will allow for a cost-effective and simplified approach to monitor real-world, NOx emission rates. The technology of on-board NOx sensors is in its initial stages to be used to monitor in-use NOx emissions and the ability of the sensor to measure NO x concentration during selective catalytic reduction (SCR) activity period is of concern. Furthermore, the on-board NOx sensors are also subject to various cross-sensitivity and durability concerns.;The primary objective of this dissertation is to compare the on-board NOx sensor response and accuracy against laboratory grade instrumentation that include PEMS using Non-Dispersive Ultra-Violent (NDUV) and Fourier transform infrared spectroscopy (FTIR) measurement to assess the measurement thresholds of on-board NOx sensors. The study compares the cross-sensitivity of the NOx sensors to ammonia (NH3) concentration in the exhaust. NH3 slip from SCR is believed to interfere with NO x measurements using Zirconium oxide sensors and this study will discuss NH3-NOx cross sensitivity on on-board NO x sensors during real-world HD vehicle activity. Results from this study will compare on-board NOx sensor measurement capabilities and they will be assessed at different power levels related to different SCR conversion efficiency and different NOx concentration levels related to measurements obtained from a laboratory grade emissions measurement system FTIR. The secondary objective of this work is to explore and modify boundary conditions for the Not-to-exceed (NTE) and (Work-based window) WBW regulatory protocols due to deficiencies of current protocols in appropriately characterizing regulated emissions especially during the port drayage and urban activity, characterized by low-load engine operation. Thus, new revised regulatory protocols for a wide range of driving activity are needed for an accurate characterization of in-use NOx emissions
    • …
    corecore