5,711 research outputs found

    Nonparametric estimation of scalar diffusions based on low frequency data

    Full text link
    We study the problem of estimating the coefficients of a diffusion (X_t,t\geq 0); the estimation is based on discrete data X_{n\Delta},n=0,1,...,N. The sampling frequency \Delta^{-1} is constant, and asymptotics are taken as the number N of observations tends to infinity. We prove that the problem of estimating both the diffusion coefficient (the volatility) and the drift in a nonparametric setting is ill-posed: the minimax rates of convergence for Sobolev constraints and squared-error loss coincide with that of a, respectively, first- and second-order linear inverse problem. To ensure ergodicity and limit technical difficulties we restrict ourselves to scalar diffusions living on a compact interval with reflecting boundary conditions. Our approach is based on the spectral analysis of the associated Markov semigroup. A rate-optimal estimation of the coefficients is obtained via the nonparametric estimation of an eigenvalue-eigenfunction pair of the transition operator of the discrete time Markov chain (X_{n\Delta},n=0,1,...,N) in a suitable Sobolev norm, together with an estimation of its invariant density.Comment: Published at http://dx.doi.org/10.1214/009053604000000797 in the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    A Riemannian-Stein Kernel Method

    Full text link
    This paper presents a theoretical analysis of numerical integration based on interpolation with a Stein kernel. In particular, the case of integrals with respect to a posterior distribution supported on a general Riemannian manifold is considered and the asymptotic convergence of the estimator in this context is established. Our results are considerably stronger than those previously reported, in that the optimal rate of convergence is established under a basic Sobolev-type assumption on the integrand. The theoretical results are empirically verified on S2\mathbb{S}^2

    Early stopping for statistical inverse problems via truncated SVD estimation

    Full text link
    We consider truncated SVD (or spectral cut-off, projection) estimators for a prototypical statistical inverse problem in dimension DD. Since calculating the singular value decomposition (SVD) only for the largest singular values is much less costly than the full SVD, our aim is to select a data-driven truncation level m^∈{1,…,D}\widehat m\in\{1,\ldots,D\} only based on the knowledge of the first m^\widehat m singular values and vectors. We analyse in detail whether sequential {\it early stopping} rules of this type can preserve statistical optimality. Information-constrained lower bounds and matching upper bounds for a residual based stopping rule are provided, which give a clear picture in which situation optimal sequential adaptation is feasible. Finally, a hybrid two-step approach is proposed which allows for classical oracle inequalities while considerably reducing numerical complexity.Comment: slightly modified version. arXiv admin note: text overlap with arXiv:1606.0770

    Ridgelets and the representation of mutilated Sobolev functions

    Get PDF
    We show that ridgelets, a system introduced in [E. J. Candes, Appl. Comput. Harmon. Anal., 6(1999), pp. 197–218], are optimal to represent smooth multivariate functions that may exhibit linear singularities. For instance, let {u · x − b > 0} be an arbitrary hyperplane and consider the singular function f(x) = 1{u·x−b>0}g(x), where g is compactly supported with finite Sobolev L2 norm ||g||Hs, s > 0. The ridgelet coefficient sequence of such an object is as sparse as if f were without singularity, allowing optimal partial reconstructions. For instance, the n-term approximation obtained by keeping the terms corresponding to the n largest coefficients in the ridgelet series achieves a rate of approximation of order n−s/d; the presence of the singularity does not spoil the quality of the ridgelet approximation. This is unlike all systems currently in use, especially Fourier or wavelet representations
    • …
    corecore