104 research outputs found

    Modeling Aboveground Biomass in Hulunber Grassland Ecosystem by Using Unmanned Aerial Vehicle Discrete Lidar

    Get PDF
    Accurate canopy structure datasets, including canopy height and fractional cover, are required to monitor aboveground biomass as well as to provide validation data for satellite remote sensing products. In this study, the ability of an unmanned aerial vehicle (UAV) discrete light detection and ranging (lidar) was investigated for modeling both the canopy height and fractional cover in Hulunber grassland ecosystem. The extracted mean canopy height, maximum canopy height, and fractional cover were used to estimate the aboveground biomass. The influences of flight height on lidar estimates were also analyzed. The main findings are: (1) the lidar-derived mean canopy height is the most reasonable predictor of aboveground biomass (R2 = 0.340, root-mean-square error (RMSE) = 81.89 g·m−2, and relative error of 14.1%). The improvement of multiple regressions to the R2 and RMSE values is unobvious when adding fractional cover in the regression since the correlation between mean canopy height and fractional cover is high; (2) Flight height has a pronounced effect on the derived fractional cover and details of the lidar data, but the effect is insignificant on the derived canopy height when the flight height is within the range (<100 m). These findings are helpful for modeling stable regressions to estimate grassland biomass using lidar returns

    A Comparative Analysis of Phytovolume Estimation Methods Based on UAV-Photogrammetry and Multispectral Imagery in a Mediterranean Forest

    Get PDF
    Management and control operations are crucial for preventing forest fires, especially in Mediterranean forest areas with dry climatic periods. One of them is prescribed fires, in which the biomass fuel present in the controlled plot area must be accurately estimated. The most used methods for estimating biomass are time-consuming and demand too much manpower. Unmanned aerial vehicles (UAVs) carrying multispectral sensors can be used to carry out accurate indirect measurements of terrain and vegetation morphology and their radiometric characteristics. Based on the UAV-photogrammetric project products, four estimators of phytovolume were compared in a Mediterranean forest area, all obtained using the difference between a digital surface model (DSM) and a digital terrain model (DTM). The DSM was derived from a UAV-photogrammetric project based on the structure from a motion algorithm. Four different methods for obtaining a DTM were used based on an unclassified dense point cloud produced through a UAV-photogrammetric project (FFU), an unsupervised classified dense point cloud (FFC), a multispectral vegetation index (FMI), and a cloth simulation filter (FCS). Qualitative and quantitative comparisons determined the ability of the phytovolume estimators for vegetation detection and occupied volume. The results show that there are no significant differences in surface vegetation detection between all the pairwise possible comparisons of the four estimators at a 95% confidence level, but FMI presented the best kappa value (0.678) in an error matrix analysis with reference data obtained from photointerpretation and supervised classification. Concerning the accuracy of phytovolume estimation, only FFU and FFC presented differences higher than two standard deviations in a pairwise comparison, and FMI presented the best RMSE (12.3 m) when the estimators were compared to 768 observed data points grouped in four 500 m2 sample plots. The FMI was the best phytovolume estimator of the four compared for low vegetation height in a Mediterranean forest. The use of FMI based on UAV data provides accurate phytovolume estimations that can be applied on several environment management activities, including wildfire prevention. Multitemporal phytovolume estimations based on FMI could help to model the forest resources evolution in a very realistic way

    Vegetation traits of pre-Alpine grasslands in southern Germany

    Get PDF
    The data set contains information on aboveground vegetation traits of > 100 georeferenced locations within ten temperate pre-Alpine grassland plots in southern Germany. The grasslands were sampled in April 2018 for the following traits: bulk canopy height; weight of fresh and dry biomass; dry weight percentage of the plant functional types (PFT) non-green vegetation, legumes, non-leguminous forbs, and graminoids; total green area index (GAI) and PFT-specific GAI; plant water content; plant carbon and nitrogen content (community values and PFT-specific values); as well as leaf mass per area (LMA) of PFT. In addition, a species specific inventory of the plots was conducted in June 2020 and provides plot-level information on grassland type and plant species composition. The data set was obtained within the framework of the SUSALPS project (“Sustainable use of alpine and pre-alpine grassland soils in a changing climate”; https://www.susalps.de/) to provide in-situ data for the calibration and validation of remote sensing based models to estimate grassland traits

    Grassland health assessment based on indicators monitored by UAVs: a case study at a household scale

    Get PDF
    Grassland health assessment (GHA) is a bridge of study and management of grassland ecosystem. However, there is no standardized quantitative indicators and long-term monitor methods for GHA at a large scale, which may hinder theoretical study and practical application of GHA. In this study, along with previous concept and practices (i.e., CVOR, the integrated indexes of condition, vigor, organization and resilience), we proposed an assessment system based on the indicators monitored by unmanned aerial vehicles (UAVs)-UAVCVOR, and tested the feasibility of UAVCVOR at typical household pastures on the Qinghai-Tibetan Plateau, China. Our findings show that: (1) the key indicators of GHA could be measured directly or represented by the relative counterpart indicators that monitored by UAVs, (2) there was a significantly linear relationship between CVOR estimated by field- and UAV-based data, and (3) the CVOR decreased along with the increasing grazing intensity nonlinearly, and there are similar tendencies of CVOR that estimated by the two methods. These findings suggest that UAVs is suitable for GHA efficiently and correctly, which will be useful for the protection and sustainable management of grasslands

    Beyond trees: Mapping total aboveground biomass density in the Brazilian savanna using high-density UAV-lidar data

    Get PDF
    Tropical savanna ecosystems play a major role in the seasonality of the global carbon cycle. However, their ability to store and sequester carbon is uncertain due to combined and intermingling effects of anthropogenic activities and climate change, which impact wildfire regimes and vegetation dynamics. Accurate measurements of tropical savanna vegetation aboveground biomass (AGB) over broad spatial scales are crucial to achieve effective carbon emission mitigation strategies. UAV-lidar is a new remote sensing technology that can enable rapid 3-D mapping of structure and related AGB in tropical savanna ecosystems. This study aimed to assess the capability of high-density UAV-lidar to estimate and map total (tree, shrubs, and surface layers) aboveground biomass density (AGBt) in the Brazilian Savanna (Cerrado). Five ordinary least square regression models esti-mating AGBt were adjusted using 50 field sample plots (30 m × 30 m). The best model was selected under Akaike Information Criterion, adjusted coefficient of determination (adj.R2), absolute and relative root mean square error (RMSE), and used to map AGBt from UAV-lidar data collected over 1,854 ha spanning the three major vegetation formations (forest, savanna, and grassland) in Cerrado. The model using vegetation height and cover was the most effective, with an overall model adj-R2 of 0.79 and a leave-one-out cross-validated RMSE of 19.11 Mg/ha (33.40%). The uncertainty and errors of our estimations were assessed for each vegetation formation separately, resulting in RMSEs of 27.08 Mg/ha (25.99%) for forests, 17.76 Mg/ha (43.96%) for savannas, and 7.72 Mg/ha (44.92%) for grasslands. These results prove the feasibility and potential of the UAV-lidar technology in Cerrado but also emphasize the need for further developing the estimation of biomass in grasslands, of high importance in the characterization of the global carbon balance and for supporting integrated fire management activities in tropical savanna ecosystems. Our results serve as a benchmark for future studies aiming to generate accurate biomass maps and provide baseline data for efficient management of fire and predicted climate change impacts on tropical savanna ecosystems

    ASSESSING THE USE OF LIDAR AND UAV TECHNOLOGY FOR MONITORING GROWING ALFALFA

    Get PDF
    Alfalfa is a popularly grown crop because of its value as a nutritious feed source for livestock. The efficient production of an alfalfa crop relies on the monitoring of certain parameters, like height, quality, and yield. Traditionally, producers have used manual measurements of alfalfa plant height to estimate the nutritive quality and yield of a growing alfalfa crop. Manual measurements of plant height are often labor intensive and provide low resolution data that is not acceptable for full field scale assessment of growing alfalfa. The two studies presented in this thesis offer detailed insight into the rapid and accurate monitoring of alfalfa with LiDAR and UAV technologies. The first study explores the use of a simple single beam LiDAR sensor to accurately estimate the average canopy height and yield of an alfalfa crop. Predictive models of alfalfa canopy height were developed and evaluated to find the optimal LiDAR derived measurements to use. The resulting measurements were then used to build predictive models of yield, and the best yield model was determined. The best models of canopy height and yield both incorporated the 95th percentile of LiDAR derived canopy height as a single explanatory variable. The second study assesses the field conditions, flight parameters, and general statistical descriptors that should be considered for the stable collection and application of UAV derived canopy height information. Data taken from different alfalfa fields at different flight parameters with different statistical processing were all compared. General canopy height distribution statistics from UAV flights flown at or below 50 m with nadir and oblique camera angles over thick stands of alfalfa were determined to be reliable for the detection and application of the alfalfa canopy surface. Using these determined methods, predictive models of canopy height and yield were generated and compared. The best model of average canopy height used the 50th percentile of UAV derived canopy height from an UAV flight at 30 m in a nadir imaging configuration. The best model of yield used the 95th percentile from an UAV flight at 50 m in an oblique imaging configuration

    Monitoring biomass in two heterogeneous mountain pasture communities by image based 3D point cloud derived predictors

    Get PDF
    Abstract Primary productivity is a robust indicator of ecosystem functioning because of its close relationships with the stability of the ecological systems. In ecological research, the above ground biomass (AGB) is the most commonly used proxy of primary productivity. However, despite their ecological relevance, the estimates of primary productivity are not addressed by current protocols for monitoring the conservation status of the habitats of Community interest. In this paper, we analyse the accuracy of AGB measurements obtained by image-derived 3D reconstructions of two contrasting mountain grasslands listed as habitats of Community interest in the Annex I of the Habitats Directive. More specifically, we compared the accuracy of the AGB estimates provided by four models, based on four different predictors (height, volume, volume adjusted, and cover volume), in order to evaluate their robustness against within- and between-community heterogeneity. Our study revealed that AGB measures computed from 3D vegetation reconstructions can be an effective way to evaluate primary productivity in herbaceous communities with complex structure and composition patterns. In particular, the vegetation height showed to have the highest correlation with direct AGB measurements. However, the vegetation volume, once adjusted by the coefficient of density, resulted to be the most effective proxy due to the lowest error level. Therefore, such a parameter could be routinely used as a non-destructive indicator for monitoring habitats of particular conservation concern. As a major limitation for this approach, we detected some loss of predictivity power at very low productivity rates

    Kliimamuutuse mÔju hindamine rannaniidu taimekooslusele mesokosmi katse ja mehitamata ÔhusÔidukiga kogutud andmete pÔhjal

    Get PDF
    A Thesis for applying for the degree of Doctor of Philosophy in Environmental Protection.VĂ€itekiri filosoofiadoktori kraadi taotlemiseks keskkonnakaitse erialal.Semi-natural grasslands are an essential part of the cultural landscape of Europe. Semi-natural grasslands are commonly characterised by a very high biodiversity, including rare species. Beyond the high biodiversity value, semi-natural grasslands worldwide provide many ecosystem services, including: carbon sequestration and storage, nutrient cycling, regulation of soil quality, habitats for migrating birds, erosion control, and flood regulation. Within the realm of semi-natural grasslands, coastal meadows are particularly important. However, coastal grasslands are threatened by a range of factors such as coastal squeeze, transformation into monoculture ponds, pollution, and climate change. Coastal areas are threatened at a range of spatial scales as a result of sea-level rise, and can include higher flooding frequency in coastal areas, salt water intrusion in aquifers, and potential declines in the extent of coastal wetlands. A warmer climate also implies a modification in precipitation patterns affecting runoff into the sea. In coastal areas, both water levels and salinity have a strong impact on species distribution and therefore on the structure and composition of aquatic and coastal floral and faunal communities. Consequently, plant communities in coastal meadows are expected to undergo changes in their composition and structure. The current thesis explores different methodologies to assess plant community distribution, above-ground biomass, and the effects of management type, duration, and intensity on sward structure using UAV-derived multispectral data and aerial photogrammetry. In addition, the keystone of this thesis is a mesocosm experiment that was used to assess shifts in species richness and abundance in plant community types in Estonian coastal meadows related to future change scenarios of water level and salinity for the Baltic Sea. a. Unmanned Aerial Vehicle (UAV) The use of UAV demonstrated to be able to identify plant community extent and distribution in high biodiversity value coastal meadows in West Estonia. Species diversity and biomass significantly influence the quality of data and this should be accounted for when planning the sample collection to achieve better results. This study has shown that UAVs are useful tools of mapping grasslands at a plant community level. Also, UAV showed to be possible to reveal the structure of the grassland and how it is affected by the management history. For example, the grassland turns more homogeneous under long-term monospecific grazing, b. Mesoscosm Experiment The mesocosm experiment in the present study revealed different temporal changes of wetland communities to altered salinity and water conditions, highlighting the response of plant species to environmental variables. These changes were not significant according to alteration of water level and salinity in the Open Pioneer community, but they were over time. On the other hand, Lower Shore and Upper Shore had significant changes according to time and treatments. These could be explained by dynamic differences in the communities, since Open Pioneer was more variable. c. Conclusions Both methodologies, remote sensing and the mesocosm experiment, are evidently important to evaluate the structure and function of Estonian coastal meadows. The mapping of the extent and structure of coastal plant communities allows an evaluation of the current state of the ecosystem. The mesocosm experiment helps to understand changes in plant community composition under altered conditions of water level and salinity in Estonian coastal meadows and consequently, understand how species richness, abundance, and biomass will respond to those changes. This information is important when considering the protection and potential management of these areas taking into account the species diversity of fauna and flora as well as that of livestock.Uuring viidi lĂ€bi kahel tasandil: uuringukohtades LÀÀne-Eestis ja katsekeskkonnas. Esimesel juhul valiti Silma looduskaitsealal, Matsalu rahvuspargis ja Vormsi saarel ranniku taimekoosluste ja maapealse biomassi kaardistamiseks kokku ĂŒheksa rannaniiduala (I, II). Teine osa hĂ”lmab mesokosmi katset (III), mille kĂ€igus kasutati katse seadmiseks ja eksperimenteerimiseks Silma looduskaitsealalt kogutud proove. Vaatamata oma suhteliselt vĂ€ikesele pindalale (45 228 km2) iseloomustab Eestit mitmekesine geoloogia, pinnamood ja kliima. LÀÀnemere rannaniidud on tekkinud ja need sĂ€ilivad maa isostaatilise tĂ”usu, setete kogunemise ja alade vĂ€hese intensiivsusega majandamise – karjatamise vĂ”i niitmise – tĂ”ttu. Eesti rannikumĂ€rgaladel on ebatavaline hĂŒdroloogiline reĆŸiim. Kuna loodete ulatus on vĂ€ga vĂ€ike (~0,02 m), pĂ”hjustab rannaniitude ĂŒleujutusi valdavalt tsĂŒklonaalne aktiivsus PĂ”hja-Atlandil ja Fennoskandias. Üleujutuste sagedus ja ulatus on ebaregulaarne ning varieerub kogu rannikumaastikul, sĂ”ltudes tuule kiirusest ja suunast. Hiljutised hinnangud suhtelise meretaseme tĂ”usu kohta kolmelt mÔÔnamÔÔturilt piki Eesti rannikut on jĂ€rgmised: Tallinnas 1,5–1,7 mm a-1, Narva-JĂ”esuus 1,7–2,1 mm a-1 ja PĂ€rnus 2,3–2,7 mm a-1 (Ward et al., 2014). Taimekoosluse klassifitseerimiseks ja biomassi prognoosimiseks analĂŒĂŒsiti ĂŒheksat rannikumĂ€rgala kolmes kohas Silma looduskaitsealal, kahes kohas Matsalu rahvuspargis ja neljas kohas Vormsi saarel. Neis kohtades esinevad kĂ”ik vĂ€itekirjas kĂ€sitletud taimekooslused. Uurimiskohtade taimekooslused liigitati vastavalt BurnsideÂŽi jt fĂŒtosotsioloogilisele klassifikatsioonile (2007): pilliroostik, vĂ”sasoo, madal rannik, kĂ”rgrannik, pioneerliikidega paljakud, kĂ”rgrohustu, vĂ”sa ja metsamaa. VĂ”sasoo ning vĂ”sa ja metsamaa jĂ€eti nende marginaalse esinemise tĂ”ttu uurimusest vĂ€lja. Uurimistöö kĂ€igus tehti kaks erinevat analĂŒĂŒsi, kasutades UAV-ga kogutud multispektraal- ja rgb-fotosid. UAV multispektraalseid pilte kasutati taimekoosluste kaardistamiseks Silma looduskaitsealal PĂ”hja-Tahu, LĂ”una-Tahu ja Kudani rannaniidul (I). JĂ€rgnevalt kasutati multispektraalseid ja rgb-pilte kĂ”rge ruumilise eraldusvĂ”imega kaartide koostamiseks maapealse biomassi tuvastamiseks kĂ”igis ĂŒheksas uuringukohas (II). Taimekoosluste kaardistamiseks (I) ja maapealse biomassi prognoosimiseks (II) kasutati otsustusmetsa klassifikatsiooni. SeejĂ€rel analĂŒĂŒsiti maapealse biomassi kaartide abil majandamisviisi ja intensiivsuse mĂ”ju rannaniitude heinamaade struktuurile (II). Teavet rannaniitude kasutusviisi kohta saadi maaomanikega isiklikult suheldes. Uurimistöö teises osas valiti mesokosmi katse jaoks kolm taimekooslust: pioneerliikidega paljakud, madal rannik ja kĂ”rgrannik. Need kooslused valiti sealsete vĂ”tmeliikide spetsiifilise autökoloogilise kasvukohaeelistuse tĂ”ttu (nt soolsus ja mulla veesisaldus). Katsest vĂ€lja jĂ€etud pilliroostikus ja vĂ”sasoos domineerivad ĂŒleujutust taluvad liigid; kĂ”rgrohustu kujutab endast maismaa ja mĂ€rgalade ökosĂŒsteemi vahelist kooslust, ning vĂ”sa on tĂ€ielikult maismaa. Silma looduskaitsealal varuti PĂ”hja-Tahu alalt 2018. aasta juunis kolmest valitud taimekooslusest 15 mĂ€tast (suurus 50 x 70 cm, paksus 30 cm). Mesokosmi katse varustus koosnes mahutitest (90L, mÔÔtmed 56 x 79 x 32 cm), mis olid tĂ€idetud 2:1:1 mullaseguga, mis koosneb pestud sĂ”mera struktuuriga liivast, savist ja kompostist, mis on vĂ€ga sarnane mĂ€rgala pĂ”hjasubstraadiga. Mahutid numereeriti ja varustati vastava tĂ€hisega. Mahutid asusid kogu katse jooksul samal kohal. Katse kĂ€iku hinnati alalise gradueeritud 50 cm2 kvadraadi abil, mis jaotati 25 kvadraadiks (10 x 10 cm), ja mÀÀrati kindlaks muutused esinevate taimeliikide arvukuses pinnakatte pindala jĂ€rgi (katteprotsent). Katse kestis kolme aastat veetaseme ja soolsuse tingimustes, mis tuletati kliimamuutuste prognoosidest 2100. aastaks. Liikide arvukus ja liigirikkus arvutati 2018., 2019. ja 2020. aastaks iga taimekoosluse kohta eraldi. Liigirikkuse erinevusi aastati ja kasvutingimuste suhtes hinnati Kruskal Wallise testiga, mis pĂ”hineb Bonferroni kohandustega Dunni testil, et tuvastada liigirikkuse erinevusi igal aastal. Liigilise arvukuse esitamiseks kasutati arvukuse kĂ”veraid. Taimekoosluse koostise erinevuste uurimiseks kasutati permutatsioonilist mitmemÔÔtmelist analĂŒĂŒsi Bray-Curtise erinevusega. Aasta ristmĂ”ju analĂŒĂŒsis kĂ€sitleti töötlemisviisi fikseeritud mĂ”ju ja valimeid juhusliku mĂ”juna. Tulemused ja jĂ€reldused Rannaniitudel hinnati taimekoosluste levikut, maismaa biomassi ja taimestiku vertikaalset struktuuri. Fleissi kapa kordaja 0,89 pĂ”hjal kaardistati pĂ”hjalikult taimekooslused (I). Otsustusmetsa klassijĂ€rgsed vead nĂ€itavad, et homogeensema struktuuriga piirkondi on kergem klassifitseerida kui keerulise struktuuriga koosluseid. Otsustusmetsa algoritmi jĂ”udlusanalĂŒĂŒs nĂ€itas, et biomassi hindamisel saadi parim tulemus, kui multispektraalne info kombineeriti fotogramm-meetriliselt loodud digitaalse maastikumudeliga (DTM, ingl digital terrain model) (II). Tulemused viitavad sellele, et mitme anduri kombinatsiooni saab kasutada ökosĂŒsteemi omaduste mÔÔtmiseks, mida ainult spektraalinformatsiooni analĂŒĂŒsides ei pruugi tuvastada. Siinse uuringu maapealse biomassi prognooside suur tĂ€psus nĂ€itab, et rannaniitude jĂ€lgimisel on kaugseire UAV-ga sobiv meetod. StruktuurianalĂŒĂŒsi tulemused nĂ€itasid, mil mÀÀral mĂ”jutab biomassi jaotust karjatamise kestus ja heterogeensus. Pidevalt majandatavatele rohumaadele on iseloomulikud suuremad ja homogeensemad alad (II). Üldine lineaarne mudelianalĂŒĂŒs ja Mann-Whitney u-testid nĂ€itasid, kuidas taimtoidulised liigid mĂ”jutavad rohumaa struktuuri. Rohumaad, millel karjatatakse erinevaid taimtoidulisi, on mitmekesisema struktuuriga kui veiste karjamaa (II). Mesokosmi katse tulemused nĂ€itasid, et kĂ”igis kolmes LÀÀnemere ranniku mĂ€rgalade koosluses ilmnesid aja jooksul vee- ja soolsusreĆŸiimis mĂ€rkimisvÀÀrsed muutused, mis tĂ”i esile taimeliikide reaktsiooni keskkonnamuutuste suhtes (III). Pioneerliikidega paljakutel suurenes liigirikkus ja taimkate kĂ”igi keskkonnamuutuste korral, sellega vĂ”rreldes esines madalal rannikul ja kĂ”rgrannikul nii veetaseme kui ka soolsusega seotud muutusi vĂ€hemal mÀÀral. Pioneerliikidega paljakuid mĂ”jutab enamasti soolsus, seda isegi peamiselt sĂ”merast, keskmise fraktsiooniga ja peenest liivast koosnevas pinnases, mis sĂ€ilitab vĂ€hem toitaineid kui peenema fraktsiooniga muld. Spergularia marina ja Glaux maritima aitasid kaasa liigirikkuse suurenemisele mulla suurenenud ja vĂ€henenud soolsuse tingimustes. Üldiselt ei ilmnenud madala ranniku ja kĂ”rgranniku taimekooslustes soolsuse muutumise korral olulisi muutusi vĂ”rreldes kontrollkatsega. Nendes kooslustes on liike, mis kasvavad nii soolases kui ka mittesoolases keskkonnas. Veetaseme muutus mĂ”jutas pioneerliikidega paljakute taimekooslust sarnaselt soolsuse muutmisega. Selle koosluse liigirikkus suurenes kĂ”rgema veetaseme korral, vĂ”rreldes kontrollkatsega. KĂ”rgema veetasemega kohanenud liike nagu Eleocharis palustris esines kĂ”rgenenud veetaseme korral kolmandal aastal rohkem; alanenud vees leidus katse lĂ”pus rohkem vĂ€iksema veevajadusega liike, nagu Glaux maritima ja Centaurium littorale. Madalal rannikul registreeriti madalama veetaseme korral liigirikkuse muutus, vĂ”rreldes kontrollkatsega. Aja jooksul toimuv liikide varieeruvus ilmnes vĂ€hese pinnakatvusega liikide puhul, nt ahenesid Carex flacca ja Triglochin palustrisÂŽe kasvukohad. Madal rannik asub veetasemelt pioneerliikidega paljaku ja kĂ”rgranniku vahel ning see vĂ”ib seletada, miks sealsed liigid taluvad mulla mitmesuguseid niiskustingimusi. KĂ”rgranniku koosluses vĂ€henes kĂ”rgenenud veetaseme korral liikide arv ja sellest tulenevalt ka liigirikkus; sealjuures laienesid vĂ€hese pinnakatvuse ja madala veetasemega kohastunud liikide Stellaria graminea ja Viola canina kasvukohad. See uurimus nĂ€itas, et ökoloogilistes uuringutes vĂ”ib erinevate metoodikate kombinatsioon osutuda tĂ”husaks. Vaid vĂ€hestes uuringutes kombineeritakse ökosĂŒsteemiprotsesside mĂ”istmiseks erinevaid lĂ€henemisviise, nt kaugseiret ja katseplatvorme, antud töös mesokosmi katset. Uued tehnoloogilised edusammud kaugseire vallas vĂ”ivad lahendada kĂŒsimusi, millele vastuse leidmine traditsiooniliste ökoloogiliste meetodite abil oleks keeruline vĂ”i ebapraktiline. Samas on traditsioonilise lĂ€henemisviisiga, nt mesokosmi katsega saadud teadmised uue tehnoloogilise potentsiaali rakendamiseks vĂ€ga vajalikud. Uurimus nĂ€itas, et UAV on sobiv vahend rannikurohumaade struktuuri ja taimekoosluste leviku tĂ€pse eraldusvĂ”imega kaartide koostamiseks. Teisest kĂŒljest aitab mesokosmi katse mĂ”ista taimekoosluse koostise muutusi eri veetaseme ja soolsuse tingimustes.Publication of this thesis is supported by the Estonian University of Life Sciences and by the Doctoral School of Earth Sciences and Ecology created under the auspices of the European Social Fund

    Comparison of visual assessment and digital image analysis for canopy cover estimation

    Get PDF
    Nowadays, in the context of agriculture, cover crops are crops cultivated with the sole aim of providing important ecosystem services such as erosion prevention. Many services offered by these crops are directly linked to the development of their vegetation, and especially of canopy cover. A proper estimation of this cover is thus necessary to evaluate cover crop performance. Many methods to estimate canopy cover exist, but differ in terms of effort and time needed to implement them. In this study, we compared visual assessment of canopy cover in the field with two methods of digital image analysis (Assess and Canopeo), for different cover crop species and vegetation types. Visual estimation was positively correlated with both type of image analysis estimations. However, it showed systematically lower values of canopy cover, especially at intermediate canopy cover values. The type of vegetation influenced the visual and digital image estimations, narrow leaf species being the most difficult to evaluate visually. This study showed that depending on its utilisation, visual canopy cover assessment could be useful, especially when only relative estimation of canopy cover is needed. When absolute canopy cover estimation is needed, the use of digital image analysis should be preferred
    • 

    corecore