1,625 research outputs found

    Heart Rate Extraction from Novel Neck Photoplethysmography Signals.

    Get PDF
    This paper demonstrates for the first time how heart rate (HR) can be extracted from novel neck photoplethysmography (PPG). A novel algorithm is presented, which when tested in neck PPG signals recorded from 9 subjects at different respiratory rates, obtained good precision with respect to gold standard ECG signals. Mean absolute error (MAE), standard deviation error (SDAE) and root-mean-square error (RMSE) resulted in 1.22, 1.54 and 1.98 beats per minute (BPM), respectively. HRneck estimation showed strong correlation (R=0.94) with reference HRECG. Good agreement between both techniques was also demonstrated by Bland-Altman analysis. The bias between mean HR paired differences was -0.16 BPM and 95% limits of agreement (LoA) were (-4.7, 4.4). Comparatively, for widely used finger PPG, errors were slightly smaller (MAE=0.38 BPM, SDAE=0.48 BPM, RMSE=0.62BPM) and the correlation with reference ECG was also very close to 1 (R=0.99). Bias of -0.04 BPM and 95% LoA (-1.5, 1.4), also showed high degree of agreement. However, these findings show the potential the neck could have as an alternative body location for wearable monitors, aiming to reduce the number of sensing sites whilst still providing access to a wide variety of physiological parameters

    Protocol of the SOMNIA project : an observational study to create a neurophysiological database for advanced clinical sleep monitoring

    Get PDF
    Introduction Polysomnography (PSG) is the primary tool for sleep monitoring and the diagnosis of sleep disorders. Recent advances in signal analysis make it possible to reveal more information from this rich data source. Furthermore, many innovative sleep monitoring techniques are being developed that are less obtrusive, easier to use over long time periods and in the home situation. Here, we describe the methods of the Sleep and Obstructive Sleep Apnoea Monitoring with Non-Invasive Applications (SOMNIA) project, yielding a database combining clinical PSG with advanced unobtrusive sleep monitoring modalities in a large cohort of patients with various sleep disorders. The SOMNIA database will facilitate the validation and assessment of the diagnostic value of the new techniques, as well as the development of additional indices and biomarkers derived from new and/or traditional sleep monitoring methods. Methods and analysis We aim to include at least 2100 subjects (both adults and children) with a variety of sleep disorders who undergo a PSG as part of standard clinical care in a dedicated sleep centre. Full-video PSG will be performed according to the standards of the American Academy of Sleep Medicine. Each recording will be supplemented with one or more new monitoring systems, including wrist-worn photoplethysmography and actigraphy, pressure sensing mattresses, multimicrophone recording of respiratory sounds including snoring, suprasternal pressure monitoring and multielectrode electromyography of the diaphragm

    Evaluation of a wrist-worn photoplethysmography monitor for heart rate variability estimation in patients recovering from laparoscopic colon resection

    Get PDF
    To evaluate the accuracy of heart rate variability (HRV) parameters obtained with a wrist-worn photoplethysmography (PPG) monitor in patients recovering from minimally invasive colon resection to investigate whether PPG has potential in postoperative patient monitoring. 31 patients were monitored for three days or until discharge or reoperation using a wrist-worn PPG monitor (PulseOn, Finland) with a Holter monitor (Faros 360, Bittium Biosignals, Finland) as a reference measurement device. Beat-to-beat intervals (BBI) and HRV information collected by PPG were compared with RR intervals (RRI) and HRV obtained from the ECG reference after removing artefacts and ectopic beats. The beat-to-beat mean error (ME) and mean absolute error (MAE) of good quality heartbeat intervals obtained by wrist PPG were estimated as - 1.34 ms and 10.4 ms respectively. A significant variation in the accuracy of the HRV parameters was found. In the time domain, SDNN (9.11%), TRI (11.4%) and TINN (11.1%) were estimated with low relative MAE, while RMSSD (34.3%), pNN50 (139%) and NN50 (188%) had higher errors. The logarithmic parameters in the frequency domain (VLF Log, LF Log and HF Log) exhibited the lowest relative error, and for non-linear parameters, SD2 (7.5%), DFA alpha 1 (8.25%) and DFA alpha 2 (4.71%) were calculated much more accurately than SD1 (34.3%). The wrist PPG shows some potential for use in a clinical setting. The accuracy of several HRV parameters analyzed post hoc was found sufficient to be used in further studies concerning postoperative recovery of patients undergoing laparoscopic colon resection, although there were large errors in many common HRV parameters such as RMSSD, pNN50 and NN50, rendering them unusable. ClinicalTrials.gov Identifier: NCT04996511, August 9, 2021, retrospectively registeredPeer reviewe
    • …
    corecore