90 research outputs found

    Advances in Mechanical Systems Dynamics 2020

    Get PDF
    The fundamentals of mechanical system dynamics were established before the beginning of the industrial era. The 18th century was a very important time for science and was characterized by the development of classical mechanics. This development progressed in the 19th century, and new, important applications related to industrialization were found and studied. The development of computers in the 20th century revolutionized mechanical system dynamics owing to the development of numerical simulation. We are now in the presence of the fourth industrial revolution. Mechanical systems are increasingly integrated with electrical, fluidic, and electronic systems, and the industrial environment has become characterized by the cyber-physical systems of industry 4.0. Within this framework, the status-of-the-art has become represented by integrated mechanical systems and supported by accurate dynamic models able to predict their dynamic behavior. Therefore, mechanical systems dynamics will play a central role in forthcoming years. This Special Issue aims to disseminate the latest research findings and ideas in the field of mechanical systems dynamics, with particular emphasis on novel trends and applications

    Advances in the modelling of motorcycle dynamics

    No full text
    Published versio

    Electric motorcycle modeling for speed tracking and range travelled estimation

    Get PDF
    With the massive interest in electric vehicle technology, all different types of vehicles are moving toward green awareness, including the motorcycle. As time progresses, the investigations on the motorcycle developed to an even more complex model as the model need to be able to include the dynamics of the motorcycle at high speed. Relatively, few works of the literature found on an electric motorcycle (MC) modeling. Therefore, this paper aims to develop an E-MC model that represents a realistic model of the motorcycle with both kinematics and dynamics of the motorcycle incorporated in the model. The developed model is then tested for the speed tracking and the range travelled to evaluate the performance. Two different driving cycles that commonly applied in the commercial motorcycle evaluation test are used as the driving profiles in the simulation, namely, the Worldwide Motorcycle Test Cycle and New European Driving Cycle profiles. The results show an evident ability for the developed model of the E-MC to track the speed profile. It is also noted that the distance travelled by the E-MC model can be effectively determined

    Dual Loop Rider Control of a Dynamic Motorcycle Riding Simulator

    Get PDF
    Compared to the automotive industry, the use of simulators in the motorcycle domain is negligible as for their lack of usability and accessibility. According to the state-of-the-art, it is e.g. not possible for motorcyclists to intuitively control a high-fidelity dynamic motorcycle riding simulator when getting in contact with it for the first time. There are four main reasons for the insufficient simulation quality of dynamic motorcycle riding simulators: ▪ The instability of single-track vehicles at low speed, ▪ The steering force-feedback with highly velocity-dependent behavior, ▪ Motion-simulation (high dynamics, roll angle, direct contact to the environment), ▪ The specific influence of the rider to vehicle dynamics (incl. rider motion). The last bullet point is peculiar for motorcycles and dynamic motorcycle riding simulators in comparison with other vehicle simulators, as motorcycles are significantly affected in their dynamics by the rider’s body motion. However, up until today, almost no special emphasis has been put on the consideration of rider motion on dynamic motorcycle riding simulators. In this thesis, a motorcycle riding simulator is designed, constructed and put into operation. The focus here is attaching a real rider to a virtual motorcycle. Based on a commercially available multi-body-simulation model, a simulator architecture is designed, that allows to control the virtual motorcycle not only by steering, but by rider leaning as well. This is realized by determining the so-called rider induced roll torque, that allows a holistic measurement of the apparent coupling forces between rider and simulator mockup. Performance measures and study concepts are developed that allow to rate the system. In expert and participant studies, the influence of the system on the riding behavior of the simulator is investigated. It is shown that the rider motion determination allows realistic control inputs and has a positive effect on the stabilization at various velocities. The feedback of the rider induced roll torque to the virtual dynamics model allows study participants to control the virtual motorcycle more intuitively. The vehicle states during cornering are affected as expected from real riding. First results indicate that it becomes easier for naïve study participants to access the simulator in first-contact scenarios. The achieved improvements regarding the rideability of the simulator however do not suffice to overcome the abovementioned challenges to a degree that allows for a completely intuitive interaction with the simulator throughout the whole dynamic range

    The Dynamics and Control of a Three-Wheeled Tilting Vehicle

    Get PDF
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore