1,997 research outputs found

    Analysis and use of neural networks as a tool for a rapid non-invasive estimation

    Get PDF
    Water deficit is one of the most important environmental factors limiting sustainable crop yields and it requires a reliable tool for fast and precise quantification. In this work we use simultaneously recorded signals of photoinduced prompt fluorescence (PF) and delayed fluorescence (DF) as well as modulated reflection (MR) of light at 820 nm for analysis of the changes in the photosynthetic activity in detached bean leaves during drying. Depending on the severity of the water deficit we identify different changes in the primary photosynthetic processes. When the relative water content (RWC) is decreased to 60% there is a parallel decrease in the ratio between the rate of excitation trapping in the Photosystem (PS) II reaction center and the rate of reoxidation of reduced PSII acceptors. A further decrease of RWC to 20% suppresses the electron transfer from the reduced plastoquinone pool to the PSI reaction center. At RWC below values 15%, the reoxidation of the photoreduced primary quinone acceptor of PSII, QA–, is inhibited and at less than 5%, the primary photochemical reactions in PSI and II are inactivated. Using the collected sets of PF, DF and MR signals, we construct and train an artificial neural network, capable of recognizing the RWC in a series of “unknown” samples with a correlation between calculated and gravimetrically determined RWC values of about R2 ≈ 0.98. Our results demonstrate that this is a reliable method for determination of RWC in detached leaves and after further development it could be used for quantifying of drought stress of crop plants in situ. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial

    Remote sensing bio-control damage on aquatic invasive alien plant species

    Get PDF
    Aquatic Invasive Alien Plant (AIAP) species are a major threat to freshwater ecosystems, placing great strain on South Africa’s limited water resources. Bio-control programmes have been initiated in an effort to mitigate the negative environmental impacts associated with their presence in non-native areas. Remote sensing can be used as an effective tool to detect, map and monitor bio-control damage on AIAP species. This paper  reconciles previous and current research concerning the application of remote sensing to detect and map bio-control damage on AIAP species. Initially, the spectral characteristics of bio-control damage are  described. Thereafter, the potential of remote sensing chlorophyll content and chlorophyll fluorescence as  pre-visual indicators of bio-control damage are reviewed and synthesised. The utility of multispectral and  hyperspectral sensors for mapping different severities of bio-control damage are also discussed. Popular  machine learning algorithms that offer operational potential to classify bio-control damage are proposed. This paper concludes with the challenges of remote sensing bio-control damage as well as proposes  recommendations to guide future research to successfully detect and map bio-control damage on AIAP  species

    Remote sensing and machine learning for prediction of wheat growth in precision agriculture applications

    Get PDF
    This thesis focuses on remote sensing and machine learning for prediction of wheat growth in precision agriculture applications. Agriculture is the primary productive force, which plays an important role in human activities. Wheat, as one of the essential sources of food, is also a widely planted crop. The impact of weather and climate and some other uncertain factors on wheat production is crucial. Therefore, it is necessary to use reliable and statistically reasonable models for crop growth and yield prediction based on vegetation index variables and other factors, so as to obtain reliable prediction for efficient production. Applying certain artificial intelligence algorithms to the precision agriculture can significantly improve the efficiency of traditional agriculture in crop planting and reduce the consumption of human and natural resources. Remote sensing can objectively, accurately and timely provide a large amount of information for ecological environment and crop growth in agriculture applications. By combining the image and spectral data obtained by remote sensing technology with machine learning, information about wheat growth, yield and insect pests can be learned in time. This thesis focuses on its applications in agriculture, particularly using effective prediction models such as the back propagation neural network and some optimisation algorithms for predicting wheat growth, yield and aphid. The work presented in this thesis address the issues of wheat growth prediction, yield assessment and aphid validation by model building and machine learning algorithm optimisation by means of remote sensing data. Specifically, the following objectives are defined: 1. Analyse multiple vegetation indexes based on the TM 1-4 band data of Landsat satellite and use regression algorithms to train the models and predict wheat growth; 2. Analyse and compare multiple vegetation indexes models by means of spectral data and use regression algorithms to predict wheat yield; 3. Combine spectral vegetation indexes and multiple regression algorithms to predict wheat aphid; 4. Use accurate evaluation criteria for validating the efficacy of the various algorithms. In this thesis, the remote sensing data from the satellite has been applied instead of the airborne-based remote sensing data. Based on the TM 1-4 band image data of Landsat satellite, multiple vegetation indexes were used as the input of regression algorithms. After that, four kinds of regression algorithms such as the multiple linear regression (MR) algorithm, back propagation network (BPNN) algorithm, genetic algorithm (GA) optimised BPNN algorithm and particle swarm optimisation (PSO) optimised BPNN algorithm were used to train the model and predict the LAI and SPAD. The prediction results of each algorithm were compared with the ground truth information collected by hand held instruments on the ground. The relationship between wheat yield and spectral data has been studied. Based on the BPNN algorithm, four kinds of models such as visible hyperspectral index (VHI) model, hyperspectral vegetation index (HVI) model, difference hyperspectral index (DHI) model and normalized hyperspectral index (NHI) model have been utilized to predict wheat yield. For the optimal NHI model, three regression algorithms such as back propagation network (BPNN) algorithm, genetic algorithm (GA) optimised BPNN algorithm and particle swarm optimisation (PSO) optimised BPNN algorithm, were compared to predict wheat yield, and RMSE and R-square of the three algorithms were compared and analysed. Finally, the relationship between wheat aphid and spectral data has been investigated. Nine vegetation indexes related to aphid have been estimated from spectral data as the input of regression algorithms. Five kinds of regression algorithms such as back propagation network (BPNN) algorithm, genetic algorithm (GA) optimised BPNN algorithm, particle swarm optimisation (PSO) optimised BPNN algorithm, ant colony (ACO) optimisation algorithm optimised BPNN algorithm and cuckoo search (CS) optimised BPNN algorithm have been implemented to predict wheat aphid, which was validated with the ground truth information measured by hand-held instruments on the ground. The prediction results of each algorithm have been analysed. The major original contributions of this thesis are as follows: 1. A variety of optimisation algorithms are used to improve the regression analysis of the BPNN algorithm, so that the prediction results of each model for wheat growth, yield and aphid are more accurate. 2. The spectral characteristics of winter wheat canopy have been analysed. The correlation between the absorption band and the associated physical and chemical properties of crops, specially the red edge slope, with the crop yield and wheat aphid damage is established. 3. Adjusted MSE and un-centered R-square, as accurate evaluation criteria for practical applications, are used to compare the prediction results of the models under different dimensions of the observed data. 4. Improve algorithm training by using the cross-validation method to obtain reliable and stable models for the prediction of wheat growth, yield, and aphid. Through repeated cross-validation, a better model can be obtained in the last. Key word:Precision agriculture; BP network, wheat growth assessment; wheat yield prediction, wheat aphid validationThis thesis focuses on remote sensing and machine learning for prediction of wheat growth in precision agriculture applications. Agriculture is the primary productive force, which plays an important role in human activities. Wheat, as one of the essential sources of food, is also a widely planted crop. The impact of weather and climate and some other uncertain factors on wheat production is crucial. Therefore, it is necessary to use reliable and statistically reasonable models for crop growth and yield prediction based on vegetation index variables and other factors, so as to obtain reliable prediction for efficient production. Applying certain artificial intelligence algorithms to the precision agriculture can significantly improve the efficiency of traditional agriculture in crop planting and reduce the consumption of human and natural resources. Remote sensing can objectively, accurately and timely provide a large amount of information for ecological environment and crop growth in agriculture applications. By combining the image and spectral data obtained by remote sensing technology with machine learning, information about wheat growth, yield and insect pests can be learned in time. This thesis focuses on its applications in agriculture, particularly using effective prediction models such as the back propagation neural network and some optimisation algorithms for predicting wheat growth, yield and aphid. The work presented in this thesis address the issues of wheat growth prediction, yield assessment and aphid validation by model building and machine learning algorithm optimisation by means of remote sensing data. Specifically, the following objectives are defined: 1. Analyse multiple vegetation indexes based on the TM 1-4 band data of Landsat satellite and use regression algorithms to train the models and predict wheat growth; 2. Analyse and compare multiple vegetation indexes models by means of spectral data and use regression algorithms to predict wheat yield; 3. Combine spectral vegetation indexes and multiple regression algorithms to predict wheat aphid; 4. Use accurate evaluation criteria for validating the efficacy of the various algorithms. In this thesis, the remote sensing data from the satellite has been applied instead of the airborne-based remote sensing data. Based on the TM 1-4 band image data of Landsat satellite, multiple vegetation indexes were used as the input of regression algorithms. After that, four kinds of regression algorithms such as the multiple linear regression (MR) algorithm, back propagation network (BPNN) algorithm, genetic algorithm (GA) optimised BPNN algorithm and particle swarm optimisation (PSO) optimised BPNN algorithm were used to train the model and predict the LAI and SPAD. The prediction results of each algorithm were compared with the ground truth information collected by hand held instruments on the ground. The relationship between wheat yield and spectral data has been studied. Based on the BPNN algorithm, four kinds of models such as visible hyperspectral index (VHI) model, hyperspectral vegetation index (HVI) model, difference hyperspectral index (DHI) model and normalized hyperspectral index (NHI) model have been utilized to predict wheat yield. For the optimal NHI model, three regression algorithms such as back propagation network (BPNN) algorithm, genetic algorithm (GA) optimised BPNN algorithm and particle swarm optimisation (PSO) optimised BPNN algorithm, were compared to predict wheat yield, and RMSE and R-square of the three algorithms were compared and analysed. Finally, the relationship between wheat aphid and spectral data has been investigated. Nine vegetation indexes related to aphid have been estimated from spectral data as the input of regression algorithms. Five kinds of regression algorithms such as back propagation network (BPNN) algorithm, genetic algorithm (GA) optimised BPNN algorithm, particle swarm optimisation (PSO) optimised BPNN algorithm, ant colony (ACO) optimisation algorithm optimised BPNN algorithm and cuckoo search (CS) optimised BPNN algorithm have been implemented to predict wheat aphid, which was validated with the ground truth information measured by hand-held instruments on the ground. The prediction results of each algorithm have been analysed. The major original contributions of this thesis are as follows: 1. A variety of optimisation algorithms are used to improve the regression analysis of the BPNN algorithm, so that the prediction results of each model for wheat growth, yield and aphid are more accurate. 2. The spectral characteristics of winter wheat canopy have been analysed. The correlation between the absorption band and the associated physical and chemical properties of crops, specially the red edge slope, with the crop yield and wheat aphid damage is established. 3. Adjusted MSE and un-centered R-square, as accurate evaluation criteria for practical applications, are used to compare the prediction results of the models under different dimensions of the observed data. 4. Improve algorithm training by using the cross-validation method to obtain reliable and stable models for the prediction of wheat growth, yield, and aphid. Through repeated cross-validation, a better model can be obtained in the last. Key word:Precision agriculture; BP network, wheat growth assessment; wheat yield prediction, wheat aphid validatio

    Retrieval of Leaf Area Index (LAI) and Soil Water Content (WC) Using Hyperspectral Remote Sensing under Controlled Glass House Conditions for Spring Barley and Sugar Beet

    Get PDF
    Leaf area index (LAI) and water content (WC) in the root zone are two major hydro-meteorological parameters that exhibit a dominant control on water, energy and carbon fluxes, and are therefore important for any regional eco-hydrological or climatological study. To investigate the potential for retrieving these parameter from hyperspectral remote sensing, we have investigated plant spectral reflectance (400-2,500 nm, ASD FieldSpec3) for two major agricultural crops (sugar beet and spring barley) in the mid-latitudes, treated under different water and nitrogen (N) conditions in a greenhouse experiment over the growing period of 2008. Along with the spectral response, we have measured soil water content and LAI for 15 intensive measurement campaigns spread over the growing season and could demonstrate a significant response of plant reflectance characteristics to variations in water content and nutrient conditions. Linear and non-linear dimensionality analysis suggests that the full band reflectance information is well represented by the set of 28 vegetation spectral indices (SI) and most of the variance is explained by three to a maximum of eight variables. Investigation of linear dependencies between LAI and soil WC and pre-selected SI's indicate that: (1) linear regression using single SI is not sufficient to describe plant/soil variables over the range of experimental conditions, however, some improvement can be seen knowing crop species beforehand; (2) the improvement is superior when applying multiple linear regression using three explanatory SI's approach. In addition to linear investigations, we applied the non-linear CART (Classification and Regression Trees) technique, which finally did not show the potential for any improvement in the retrieval process

    Scaling up Semi-Arid Grassland Biochemical Content from the Leaf to the Canopy Level: Challenges and Opportunities

    Get PDF
    Remote sensing imagery is being used intensively to estimate the biochemical content of vegetation (e.g., chlorophyll, nitrogen, and lignin) at the leaf level. As a result of our need for vegetation biochemical information and our increasing ability to obtain canopy spectral data, a few techniques have been explored to scale leaf-level biochemical content to the canopy level for forests and crops. However, due to the contribution of non-green materials (i.e., standing dead litter, rock, and bare soil) from canopy spectra in semi-arid grasslands, it is difficult to obtain information about grassland biochemical content from remote sensing data at the canopy level. This paper summarizes available methods used to scale biochemical information from the leaf level to the canopy level and groups these methods into three categories: direct extrapolation, canopy-integrated approach, and inversion of physical models. As for semi-arid heterogeneous grasslands, we conclude that all methods are useful, but none are ideal. It is recommended that future research should explore a systematic upscaling framework which combines spatial pattern analysis, canopy-integrated approach, and modeling methods to retrieve vegetation biochemical content at the canopy level

    Quantifying Vegetation Biophysical Variables from Imaging Spectroscopy Data: A Review on Retrieval Methods

    Get PDF
    An unprecedented spectroscopic data stream will soon become available with forthcoming Earth-observing satellite missions equipped with imaging spectroradiometers. This data stream will open up a vast array of opportunities to quantify a diversity of biochemical and structural vegetation properties. The processing requirements for such large data streams require reliable retrieval techniques enabling the spatiotemporally explicit quantification of biophysical variables. With the aim of preparing for this new era of Earth observation, this review summarizes the state-of-the-art retrieval methods that have been applied in experimental imaging spectroscopy studies inferring all kinds of vegetation biophysical variables. Identified retrieval methods are categorized into: (1) parametric regression, including vegetation indices, shape indices and spectral transformations; (2) nonparametric regression, including linear and nonlinear machine learning regression algorithms; (3) physically based, including inversion of radiative transfer models (RTMs) using numerical optimization and look-up table approaches; and (4) hybrid regression methods, which combine RTM simulations with machine learning regression methods. For each of these categories, an overview of widely applied methods with application to mapping vegetation properties is given. In view of processing imaging spectroscopy data, a critical aspect involves the challenge of dealing with spectral multicollinearity. The ability to provide robust estimates, retrieval uncertainties and acceptable retrieval processing speed are other important aspects in view of operational processing. Recommendations towards new-generation spectroscopy-based processing chains for operational production of biophysical variables are given

    Mapping grass nutrient phosphorus (P) and sodium (NA) across different grass communities using Sentinel-2 data

    Get PDF
    A research report submitted to the Faculty of Science, University of the Witwatersrand, Johannesburg, in partial fulfillment of the requirement for the degree of Master of Science (Environmental Sciences) at the School of Geography, Archaeology & Environmental Studies March 2017Accurate estimates and mapping of grass quality is important for effective rangeland management. The purpose of this research was to map different grass species as well as nutrient Phosphorus (P) and Sodium (Na) concentration across grass communities using Sentinel-2 imagery in Telperion game reserve. The main objectives of the study were to: map the most common grass communities at the Telperion game reserve using Sentinel-2 imagery using artificial neural network (ANN) classifier and to evaluate the use of Sentinel-2 (MSI) in quantifying grass phosphorus and sodium concentration across different grass communities. Grass phosphorus and sodium concentrations were estimated using Random Forest (RF) regression algorithm, normalized difference vegetation index (NDVI) and the simple ratios (SR) which were calculated from all two possible band combination of Sentinel-2 data. Results obtained demonstrated woody vegetation as the dominant vegetation and Aristida congesta as the most common grass species. The overall classification accuracy = 81%; kappa =0.78 and error rate=0.18 was achieved using the ANN classifier. Regression model for leaf phosphorus concentration prediction both NDVI and SR data sets yielded similar results (R2 =0.363; RMSE=0.017%) and (R2 =0.36 2; RMSE=0.0174%). Regression model for leaf sodium using NDVI and SR data sets yielded dissimilar results (R2 =0.23; RMSE=16.74 mg/kg) and (R2 =0.15; RMSE =34.08 mg/kg). The overall outcomes of this study demonstrate the capability of Sentinel 2 imagery in mapping vegetation quality (phosphorus and sodium) and quantity. The study recommends the mapping of grass communities and both phosphorus and sodium concentrations across different seasons to fully understand the distribution of different species across the game reserve as well as variations in foliar concentration of the elements. Such information will guide the reserve managers on resource use and conservation strategies to implement within the reserve. Furthermore, the information will enable conservation managers to understand wildlife distribution and feeding patterns. This will allow integration of effective conservation strategies into decisions on stocking capacity.MT 201
    corecore