1,258 research outputs found

    The Use of Computational Methods in the Toxicological Assessment of Chemicals in Food: Current Status and Future Prospects

    Get PDF
    A wide range of chemicals are intentionally added to, or unintentially found in, food products, often in very small amounts. Depending on the situation, the experimental data needed to complete a dietary risk assessment, which is the scientific basis for protecting human health, may not be available or obtainable, for reasons of cost, time and animal welfare. For example, toxicity data are often lacking for the metabolites and degradation products of pesticide active ingredients. There is therefore an interest in the development and application of efficient and effective non-animal methods for assessing chemical toxicity, including Quantitative Structure-Activity Relationship (QSAR) models and related computational methods. This report gives an overview of how computational methods are currently used in the field of food safety by national regulatory bodies, international advisory organisations and the food industry. On the basis of an international survey, a comprehensive literature review and a detailed QSAR analysis, a range of recommendations are made with the long-term aim of promoting the judicious use of suitable QSAR methods. The current status of QSAR methods is reviewed not only for toxicological endpoints relevant to dietary risk assessment, but also for Absorption, Distribution, Metabolism and Excretion (ADME) properties, which are often important in discriminating between the toxicological profiles of parent compounds and their reaction products. By referring to the concept of the Threshold of Toxicological Concern (TTC), the risk assessment context in which QSAR methods can be expected to be used is also discussed. This Joint Research Centre (JRC) Reference Report provides a summary and update of the findings obtained in a study carried out by the JRC under the terms of a contract awarded by the European Food Safety Authority (EFSA).JRC.DG.I.6-Systems toxicolog

    Origin of the TTC values for compounds that are genotoxic and/or carcinogenic and an approach for their revaluation

    Get PDF
    The threshold of toxicological concern (TTC) approach is a resource-effective de minimismethod for the safety assessment of chemicals, based on distributional analysis of the results of a large number of toxicological studies. It is being increasingly used to screen and prioritise substances with low exposure for which there is little or no toxicological information. The first step in the approach is the identification of substances that may be DNA-reactive mutagens, to which the lowest TTC value is applied. This TTC value was based on analysis of the cancer potency database and involved a number of assumptions that no longer reflect the state-of-the-science and some of which were not as transparent as they could have been. Hence, review and updating of the database is proposed, using inclusion and exclusion criteria reflecting current knowledge. A strategy for the selection of appropriate substances for TTC determination, based on consideration of weight of evidence for genotoxicity and carcinogenicity is outlined. Identification of substances that are carcinogenic by a DNA-reactive mutagenicmode of action and those that clearly act by a non-genotoxic mode of action will enable the protectiveness to be determined of both the TTC for DNA-reactive mutagenicityand that applied by default to substances that may be carcinogenic but are unlikely to be DNA-reactive mutagens (i.e. for Cramer class I-III compounds). Critical to the application of the TTC approach to substances that are likely to be DNA-reactive mutagens is the reliability of the software tools used to identify such compounds. Current methods for this task are reviewed and recommendations made for their application

    A Framework for assessing in silico Toxicity Predictions: Case Studies with selected Pesticides

    Get PDF
    In the regulatory assessment of chemicals, the use of in silico prediction methods such as (quantitative) structure-activity relationship models ([Q]SARs), is increasingly required or encouraged, in order to increase the efficiency and effectiveness of the risk assessment process, and to minimise the reliance on animal testing. The main question for the assessor concerns the usefulness of the prediction approach, which can be broken down into the practical applicability of the method and the adequacy of the predictions. A framework for assessing and documenting (Q)SAR models and their predictions has been established at the European and international levels. Exactly how the framework is applied in practice will depend on the provisions of the specific legislation and the context in which the non-testing data are being used. This report describes the current framework for documenting (Q)SAR models and their predictions, and discuses how it might be built upon to provide more detailed guidance on the use of (Q)SAR predictions in regulatory decision making. The proposed framework is illustrated by using selected pesticide active compounds as examples.JRC.DG.I.6-Systems toxicolog

    Chemical Similarity and Threshold of Toxicological Concern (TTC) Approaches: Report of an ECB Workshop held in Ispra, November 2005

    Get PDF
    There are many national, regional and international programmes – either regulatory or voluntary – to assess the hazards or risks of chemical substances to humans and the environment. The first step in making a hazard assessment of a chemical is to ensure that there is adequate information on each of the endpoints. If adequate information is not available then additional data is needed to complete the dataset for this substance. For reasons of resources and animal welfare, it is important to limit the number of tests that have to be conducted, where this is scientifically justifiable. One approach is to consider closely related chemicals as a group, or chemical category, rather than as individual chemicals. In a category approach, data for chemicals and endpoints that have been already tested are used to estimate the hazard for untested chemicals and endpoints. Categories of chemicals are selected on the basis of similarities in biological activity which is associated with a common underlying mechanism of action. A homologous series of chemicals exhibiting a coherent trend in biological activity can be rationalised on the basis of a constant change in structure. This type of grouping is relatively straightforward. The challenge lies in identifying the relevant chemical structural and physicochemical characteristics that enable more sophisticated groupings to be made on the basis of similarity in biological activity and hence purported mechanism of action. Linking two chemicals together and rationalising their similarity with reference to one or more endpoints has been very much carried out on an ad hoc basis. Even with larger groups, the process and approach is ad hoc and based on expert judgement. There still appears to be very little guidance about the tools and approaches for grouping chemicals systematically. In November 2005, the ECB Workshop on Chemical Similarity and Thresholds of Toxicological Concern (TTC) Approaches was convened to identify the available approaches that currently exist to encode similarity and how these can be used to facilitate the grouping of chemicals. This report aims to capture the main themes that were discussed. In particular, it outlines a number of different approaches that can facilitate the formation of chemical groupings in terms of the context under consideration and the likely information that would be required. Grouping methods were divided into one of four classes – knowledge-based, analogue-based, unsupervised, and supervised. A flowchart was constructed to attempt to capture a possible work flow to highlight where and how these approaches might be best applied.JRC.I.3-Toxicology and chemical substance

    The Applicability of Software Tools for Genotoxicity and Carcinogenicity Prediction: Case Studies relevant to the Assessment of Pesticides

    Get PDF
    This report presents research results obtained in the framework of a project on the Applicability of Quantitative Structure-Activity Relationship (QSAR) analysis in the evaluation of the toxicological relevance of metabolites and degradates of pesticide active substances. During this project, which was funded by the European Food Safety Authority (EFSA), the Joint Research Centre (JRC) performed several investigations to evaluate the comparative performance of selected software tools for genotoxicity and carcinogenicity prediction, and to develop a number of case studies to illustrate the opportunities and difficulties arising in the computational assessment of pesticides. This exercise also included an investigation of the chemical space of several pesticides datasets. The results indicate that different software tools have different advantages and disadvantages, depending on the specific requirements of the user / risk assessor. It is concluded that further work is needed to develop acceptance criteria for specific regulatory applications (e.g. evaluation of pesticide metabolites) and to develop batteries of models fulfilling such criteria.JRC.DG.I.6-Systems toxicolog

    Hybrid Computational Toxicology Models for Regulatory Risk Assessment

    Get PDF
    Computational toxicology is the development of quantitative structure activity relationship (QSAR) models that relate a quantitative measure of chemical structure to a biological effect. In silico QSAR tools are widely accepted as a faster alternative to time-consuming clinical and animal testing methods for regulatory risk assessment of xenobiotics used in consumer products. However, different QSAR tools often make contrasting predictions for a new xenobiotic and may also vary in their predictive ability for different class of xenobiotics. This makes their use challenging, especially in regulatory applications, where transparency and interpretation of predictions play a crucial role in the development of safety assessment decisions. Recent efforts in computational toxicology involve the use of in vitro data, which enables better insight into the mode of action of xenobiotics and identification of potential mechanism(s) of toxicity. To ensure that in silico models are robust and reliable before they can be used for regulatory applications, the registration, evaluation, authorization and restriction of chemicals (REACH) initiative and the organization for economic co-operation and development (OECD) have established legislative guidelines for their validation. This dissertation addresses the limitations in the use of current QSAR tools for regulatory risk assessment within REACH/OECD guidelines. The first contribution is an ensemble model that combines the predictions from four QSAR tools for improving the quality of predictions. The model presents a novel mechanism to select a desired trade-off between false positive and false negative predictions. The second contribution is the introduction of quantitative biological activity relationship (QBAR) models that use mechanistically relevant in vitro data as biological descriptors for development of computational toxicology models. Two novel applications are presented that demonstrate that QBAR models can sufficiently predict carcinogenicity when QSAR model predictions may fail. The third contribution is the development of two novel methods which explore the synergistic use of structural and biological similarity data for carcinogenicity prediction. Two applications are presented that demonstrate the feasibility of proposed methods within REACH/OECD guidelines. These contributions lay the foundation for development of novel mechanism based in silico tools for mechanistically complex toxic endpoints to successfully advance the field of computational toxicology

    Use of QSARs in international decision-making frameworks to predict health effects of chemical substances

    Get PDF
    This article is a review of the use of quantitative (and qualitative) structure-activity relationships (QSARs and SARs) by regulatory agencies and authorities to predict acute toxicity, mutagenicity, carcinogenicity, and other health effects. A number of SAR and QSAR applications, by regulatory agencies and authorities, are reviewed. These include the use of simple QSAR analyses, as well as the use of multivariate QSARs, and a number of different expert system approaches
    • …
    corecore