117 research outputs found

    Generic Multisensor Integration Strategy and Innovative Error Analysis for Integrated Navigation

    Get PDF
    A modern multisensor integrated navigation system applied in most of civilian applications typically consists of GNSS (Global Navigation Satellite System) receivers, IMUs (Inertial Measurement Unit), and/or other sensors, e.g., odometers and cameras. With the increasing availabilities of low-cost sensors, more research and development activities aim to build a cost-effective system without sacrificing navigational performance. Three principal contributions of this dissertation are as follows: i) A multisensor kinematic positioning and navigation system built on Linux Operating System (OS) with Real Time Application Interface (RTAI), York University Multisensor Integrated System (YUMIS), was designed and realized to integrate GNSS receivers, IMUs, and cameras. YUMIS sets a good example of a low-cost yet high-performance multisensor inertial navigation system and lays the ground work in a practical and economic way for the personnel training in following academic researches. ii) A generic multisensor integration strategy (GMIS) was proposed, which features a) the core system model is developed upon the kinematics of a rigid body; b) all sensor measurements are taken as raw measurement in Kalman filter without differentiation. The essential competitive advantages of GMIS over the conventional error-state based strategies are: 1) the influences of the IMU measurement noises on the final navigation solutions are effectively mitigated because of the increased measurement redundancy upon the angular rate and acceleration of a rigid body; 2) The state and measurement vectors in the estimator with GMIS can be easily expanded to fuse multiple inertial sensors and all other types of measurements, e.g., delta positions; 3) one can directly perform error analysis upon both raw sensor data (measurement noise analysis) and virtual zero-mean process noise measurements (process noise analysis) through the corresponding measurement residuals of the individual measurements and the process noise measurements. iii) The a posteriori variance component estimation (VCE) was innovatively accomplished as an advanced analytical tool in the extended Kalman Filter employed by the GMIS, which makes possible the error analysis of the raw IMU measurements for the very first time, together with the individual independent components in the process noise vector

    On Improving the Accuracy and Reliability of GPS/INS-Based Direct Sensor Georeferencing

    Get PDF
    Due to the complementary error characteristics of the Global Positioning System (GPS) and Inertial Navigation System (INS), their integration has become a core positioning component, providing high-accuracy direct sensor georeferencing for multi-sensor mobile mapping systems. Despite significant progress over the last decade, there is still a room for improvements of the georeferencing performance using specialized algorithmic approaches. The techniques considered in this dissertation include: (1) improved single-epoch GPS positioning method supporting network mode, as compared to the traditional real-time kinematic techniques using on-the-fly ambiguity resolution in a single-baseline mode; (2) customized random error modeling of inertial sensors; (3) wavelet-based signal denoising, specially for low-accuracy high-noise Micro-Electro-Mechanical Systems (MEMS) inertial sensors; (4) nonlinear filters, namely the Unscented Kalman Filter (UKF) and the Particle Filter (PF), proposed as alternatives to the commonly used traditional Extended Kalman Filter (EKF). The network-based single-epoch positioning technique offers a better way to calibrate the inertial sensor, and then to achieve a fast, reliable and accurate navigation solution. Such an implementation provides a centimeter-level positioning accuracy independently on the baseline length. The advanced sensor error identification using the Allan Variance and Power Spectral Density (PSD) methods, combined with a wavelet-based signal de-noising technique, assures reliable and better description of the error characteristics, customized for each inertial sensor. These, in turn, lead to a more reliable and consistent position and orientation accuracy, even for the low-cost inertial sensors. With the aid of the wavelet de-noising technique and the customized error model, around 30 percent positioning accuracy improvement can be found, as compared to the solution using raw inertial measurements with the default manufacturer’s error models. The alternative filters, UKF and PF, provide more advanced data fusion techniques and allow the tolerance of larger initial alignment errors. They handle the unknown nonlinear dynamics better, in comparison to EKF, resulting in a more reliable and accurate integrated system. For the high-end inertial sensors, they provide only a slightly better performance in terms of the tolerance to the losses of GPS lock and orientation convergence speed, whereas the performance improvements are more pronounced for the low-cost inertial sensors

    On the Adaptivity of Unscented Particle Filter for GNSS/INS Tightly-Integrated Navigation Unit in Urban Environment

    Get PDF
    Tight integration algorithms fusing Global Navigation Satellite System (GNSS) and Inertial Navigation System (INS) have become popular in many high-accuracy positioning and navigation applications. Despite their reliability, common integration architectures can still run into accuracy drops under challenging navigation settings. The growing computational power of low-cost, embedded systems has allowed for the exploitation of several advanced Bayesian state estimation algorithms, such as the Particle Filter (PF) and its hybrid variants, e.g. Unscented Particle Filter (UPF). Although sophisticated, these architectures are not immune from multipath scattering and Non-Line-of-Sight (NLOS) signal receptions, which frequently corrupt satellite measurements and jeopardise GNSS/INS solutions. Hence, a certain level of modelling adaptivity should be granted to avoid severe drifts in the estimated states. Given these premises, the paper presents a novel Adaptive Unscented Particle Filter (AUPF) architecture leveraging two cascading stages to cope with disruptive, biased GNSS input observables in harsh conditions. A INS-based signal processing block is implemented upstream of a Redundant Measurement Noise Covariance Estimation (RMNCE) stage to strengthen the adaptation of observables’ statistics and improve the state estimation. An experimental assessment is provided for the proposed robust AUPF that demonstrates a 10 % average reduction of the horizontal position error above the 75-th percentile. In addition, a comparative analysis both with previous adaptive architectures and a plain UPF is carried out to highlight the improved performance of the proposed methodology

    Aggressive landing maneuvers for UAVs

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2006.Includes bibliographical references (p. 69-70).VTOL (Vertical Take Off and Landing) vehicle landing is considered to be a critically difficult task for both land, marine, and urban operations. This thesis describes one possible control approach to enable landing of unmanned aircraft systems at all attitudes, including against walls and ceilings as a way to considerably enhance the operational capability of these vehicles. The features of the research include a novel approach to trajectory tracking, whereby the primary system outputs to be tracked are smoothly scheduled according to the state of the vehicle relative to its landing area. The proposed approach is illustrated with several experiments using a low-cost three-degree-of-freedom helicopter. We also include the design details of a testbed for the demonstration of the application of our research endeavor. The testbed is a model helicopter UAV platform that has indoor and outdoor aggressive flight capability.by Selcuk Bayraktar.S.M

    SIRU utilization. Volume 1: Theory, development and test evaluation

    Get PDF
    The theory, development, and test evaluations of the Strapdown Inertial Reference Unit (SIRU) are discussed. The statistical failure detection and isolation, single position calibration, and self alignment techniques are emphasized. Circuit diagrams of the system components are provided. Mathematical models are developed to show the performance characteristics of the subsystems. Specific areas of the utilization program are identified as: (1) error source propagation characteristics and (2) local level navigation performance demonstrations

    Precision Pointing Control System (PPCS) system design and analysis

    Get PDF
    The precision pointing control system (PPCS) is an integrated system for precision attitude determination and orientation of gimbaled experiment platforms. The PPCS concept configures the system to perform orientation of up to six independent gimbaled experiment platforms to design goal accuracy of 0.001 degrees, and to operate in conjunction with a three-axis stabilized earth-oriented spacecraft in orbits ranging from low altitude (200-2500 n.m., sun synchronous) to 24 hour geosynchronous, with a design goal life of 3 to 5 years. The system comprises two complementary functions: (1) attitude determination where the attitude of a defined set of body-fixed reference axes is determined relative to a known set of reference axes fixed in inertial space; and (2) pointing control where gimbal orientation is controlled, open-loop (without use of payload error/feedback) with respect to a defined set of body-fixed reference axes to produce pointing to a desired target

    Integration of GPS and low cost INS measurements

    Get PDF
    GPS and Inertial Navigation Systems (INS) are increasingly used for positioning and attitude determination in a wide range of applications. Until recently, the very high cost of the INS components limited their use to high accuracy navigation and geo-referencing applications. Over the last few years, a number of low cost inertial sensors have come on the market. Although they exhibit large errors, GPS measurements can be used to correct the INS and sensor errors to provide high accuracy real-time navigation. The integration of GPS and INS is usually achieved using a Kalman filter which is a sophisticated mathematical algorithm used to optimise the balance between the measurements from each sensor. The measurement and process noise matrices used in the Kalman filter represent the stochastic properties of each system. Traditionally they are defined a priori and remain constant throughout a processing run. In reality, they depend on factors such as vehicle dynamics and environmental conditions. In this research, three different algorithms are investigated which are able to adapt the stochastic information on-line. These are termed adaptive Kalman filtering algorithms due to their ability to automatically adapt the filter in real time to correspond to the temporal variation of the errors involved. The algorithms used in this research have been tested with the IESSG's GPS and inertial data simulation software. Field trials using a Crossbow AHRS-DMU-HDX sensor have also been completed in a marine environment and in land based vehicle trials. The use of adaptive Kalman filtering shows a clear improvement in the on-line estimation of the stochastic properties of the inertial system. It significantly enhances the speed of the dynamic alignment and offers an improvement in navigation accuracy. The use of the low cost IMU in a marine environment demonstrates that a low cost sensor can potentially meet the requirements of navigation and multi-beam sonar geo-referencing applications
    • …
    corecore