2,404 research outputs found

    Perception-aware time optimal path parameterization for quadrotors

    Full text link
    The increasing popularity of quadrotors has given rise to a class of predominantly vision-driven vehicles. This paper addresses the problem of perception-aware time optimal path parametrization for quadrotors. Although many different choices of perceptual modalities are available, the low weight and power budgets of quadrotor systems makes a camera ideal for on-board navigation and estimation algorithms. However, this does come with a set of challenges. The limited field of view of the camera can restrict the visibility of salient regions in the environment, which dictates the necessity to consider perception and planning jointly. The main contribution of this paper is an efficient time optimal path parametrization algorithm for quadrotors with limited field of view constraints. We show in a simulation study that a state-of-the-art controller can track planned trajectories, and we validate the proposed algorithm on a quadrotor platform in experiments.Comment: Accepted to appear at ICRA 202

    Data-Based MHE for Agile Quadrotor Flight

    Full text link
    This paper develops a data-based moving horizon estimation (MHE) method for agile quadrotors. Accurate state estimation of the system is paramount for precise trajectory control for agile quadrotors; however, the high level of aerodynamic forces experienced by the quadrotors during high-speed flights make this task extremely challenging. These complex turbulent effects are difficult to model and the unmodelled dynamics introduce inaccuracies in the state estimation. In this work, we propose a method to model these aerodynamic effects using Gaussian Processes which we integrate into the MHE to achieve efficient and accurate state estimation with minimal computational burden. Through extensive simulation and experimental studies, this method has demonstrated significant improvement in state estimation performance displaying superior robustness to poor state measurements.Comment: 8 pages, accepted in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 202

    Probabilistic and Distributed Control of a Large-Scale Swarm of Autonomous Agents

    Get PDF
    We present a novel method for guiding a large-scale swarm of autonomous agents into a desired formation shape in a distributed and scalable manner. Our Probabilistic Swarm Guidance using Inhomogeneous Markov Chains (PSG-IMC) algorithm adopts an Eulerian framework, where the physical space is partitioned into bins and the swarm's density distribution over each bin is controlled. Each agent determines its bin transition probabilities using a time-inhomogeneous Markov chain. These time-varying Markov matrices are constructed by each agent in real-time using the feedback from the current swarm distribution, which is estimated in a distributed manner. The PSG-IMC algorithm minimizes the expected cost of the transitions per time instant, required to achieve and maintain the desired formation shape, even when agents are added to or removed from the swarm. The algorithm scales well with a large number of agents and complex formation shapes, and can also be adapted for area exploration applications. We demonstrate the effectiveness of this proposed swarm guidance algorithm by using results of numerical simulations and hardware experiments with multiple quadrotors.Comment: Submitted to IEEE Transactions on Robotic

    Search-based Motion Planning for Aggressive Flight in SE(3)

    Get PDF
    Quadrotors with large thrust-to-weight ratios are able to track aggressive trajectories with sharp turns and high accelerations. In this work, we develop a search-based trajectory planning approach that exploits the quadrotor maneuverability to generate sequences of motion primitives in cluttered environments. We model the quadrotor body as an ellipsoid and compute its flight attitude along trajectories in order to check for collisions against obstacles. The ellipsoid model allows the quadrotor to pass through gaps that are smaller than its diameter with non-zero pitch or roll angles. Without any prior information about the location of gaps and associated attitude constraints, our algorithm is able to find a safe and optimal trajectory that guides the robot to its goal as fast as possible. To accelerate planning, we first perform a lower dimensional search and use it as a heuristic to guide the generation of a final dynamically feasible trajectory. We analyze critical discretization parameters of motion primitive planning and demonstrate the feasibility of the generated trajectories in various simulations and real-world experiments.Comment: 8 pages, submitted to RAL and ICRA 201
    • …
    corecore