83 research outputs found

    Network analysis of the cellular circuits of memory

    Get PDF
    Intuitively, memory is conceived as a collection of static images that we accumulate as we experience the world. But actually, memories are constantly changing through our life, shaped by our ongoing experiences. Assimilating new knowledge without corrupting pre-existing memories is then a critical brain function. However, learning and memory interact: prior knowledge can proactively influence learning, and new information can retroactively modify memories of past events. The hippocampus is a brain region essential for learning and memory, but the network-level operations that underlie the continuous integration of new experiences into memory, segregating them as discrete traces while enabling their interaction, are unknown. Here I show a network mechanism by which two distinct memories interact. Hippocampal CA1 neuron ensembles were monitored in mice as they explored a familiar environment before and after forming a new place-reward memory in a different environment. By employing a network science representation of the co-firing relationships among principal cells, I first found that new associative learning modifies the topology of the cells’ co-firing patterns representing the unrelated familiar environment. I fur- ther observed that these neuronal co-firing graphs evolved along three functional axes: the first segregated novelty; the second distinguished individual novel be- havioural experiences; while the third revealed cross-memory interaction. Finally, I found that during this process, high activity principal cells rapidly formed the core representation of each memory; whereas low activity principal cells gradually joined co-activation motifs throughout individual experiences, enabling cross-memory in- teractions. These findings reveal an organizational principle of brain networks where high and low activity cells are differentially recruited into coactivity motifs as build- ing blocks for the flexible integration and interaction of memories. Finally, I employ a set of manifold learning and related approaches to explore and characterise the complex neural population dynamics within CA1 that underlie sim- ple exploration.Open Acces

    Quantitative Multimodal Mapping Of Seizure Networks In Drug-Resistant Epilepsy

    Get PDF
    Over 15 million people worldwide suffer from localization-related drug-resistant epilepsy. These patients are candidates for targeted surgical therapies such as surgical resection, laser thermal ablation, and neurostimulation. While seizure localization is needed prior to surgical intervention, this process is challenging, invasive, and often inconclusive. In this work, I aim to exploit the power of multimodal high-resolution imaging and intracranial electroencephalography (iEEG) data to map seizure networks in drug-resistant epilepsy patients, with a focus on minimizing invasiveness. Given compelling evidence that epilepsy is a disease of distorted brain networks as opposed to well-defined focal lesions, I employ a graph-theoretical approach to map structural and functional brain networks and identify putative targets for removal. The first section focuses on mesial temporal lobe epilepsy (TLE), the most common type of localization-related epilepsy. Using high-resolution structural and functional 7T MRI, I demonstrate that noninvasive neuroimaging-based network properties within the medial temporal lobe can serve as useful biomarkers for TLE cases in which conventional imaging and volumetric analysis are insufficient. The second section expands to all forms of localization-related epilepsy. Using iEEG recordings, I provide a framework for the utility of interictal network synchrony in identifying candidate resection zones, with the goal of reducing the need for prolonged invasive implants. In the third section, I generate a pipeline for integrated analysis of iEEG and MRI networks, paving the way for future large-scale studies that can effectively harness synergy between different modalities. This multimodal approach has the potential to provide fundamental insights into the pathology of an epileptic brain, robustly identify areas of seizure onset and spread, and ultimately inform clinical decision making

    Epilepsy

    Get PDF
    With the vision of including authors from different parts of the world, different educational backgrounds, and offering open-access to their published work, InTech proudly presents the latest edited book in epilepsy research, Epilepsy: Histological, electroencephalographic, and psychological aspects. Here are twelve interesting and inspiring chapters dealing with basic molecular and cellular mechanisms underlying epileptic seizures, electroencephalographic findings, and neuropsychological, psychological, and psychiatric aspects of epileptic seizures, but non-epileptic as well

    Deciphering the brainstem, hippocampal and whole-brain dynamics by neuronal-ensemble event signatures

    Get PDF
    Intracortically-recorded brain signals display a rich variety of such transient activities: brief, recurring episodes of deflection or oscillatory activities that reflect cooperative neural circuit mechanisms. These network patterns of activity, also called neural events, span multiple spatio-temporal scales, and are believed to be basic computing elements during cognitive processes such as learning and off-line memory consolidation. However, both the large-scale and microscopic-scale cooperative mechanisms associated with these episodes remain poorly understood. This knowledge gap arises partly due to methodological limitations of existing experimental approaches, specifically in measuring simultaneous micro- and macroscopic aspects of neuronal activity in the brain. Therefore, this dissertation sought to study the relationship between ongoing spontaneous neural events in the hippocampus, brainstem and thalamic structures at micro-, meso- and macroscopic scales by combining data from intracortical recordings, multi-compartmental network models, and functional magnetic resonance imaging (fMRI)

    29th Annual Computational Neuroscience Meeting: CNS*2020

    Get PDF
    Meeting abstracts This publication was funded by OCNS. The Supplement Editors declare that they have no competing interests. Virtual | 18-22 July 202

    Advances in Neural Signal Processing

    Get PDF
    Neural signal processing is a specialized area of signal processing aimed at extracting information or decoding intent from neural signals recorded from the central or peripheral nervous system. This has significant applications in the areas of neuroscience and neural engineering. These applications are famously known in the area of brain–machine interfaces. This book presents recent advances in this flourishing field of neural signal processing with demonstrative applications

    Advances in Neural Signal Processing

    Get PDF
    Neural signal processing is a specialized area of signal processing aimed at extracting information or decoding intent from neural signals recorded from the central or peripheral nervous system. This has significant applications in the areas of neuroscience and neural engineering. These applications are famously known in the area of brain–machine interfaces. This book presents recent advances in this flourishing field of neural signal processing with demonstrative applications

    Advances in Neural Signal Processing

    Get PDF
    Neural signal processing is a specialized area of signal processing aimed at extracting information or decoding intent from neural signals recorded from the central or peripheral nervous system. This has significant applications in the areas of neuroscience and neural engineering. These applications are famously known in the area of brain–machine interfaces. This book presents recent advances in this flourishing field of neural signal processing with demonstrative applications
    • …
    corecore