100 research outputs found

    Comparisons of Reflectivities from the TRMM Precipitation Radar and Ground-Based Radars

    Get PDF
    Given the decade long and highly successful Tropical Rainfall Measuring Mission (TRMM), it is now possible to provide quantitative comparisons between ground-based radars (GRs) with the space-borne TRMM precipitation radar (PR) with greater certainty over longer time scales in various tropical climatological regions. This study develops an automated methodology to match and compare simultaneous TRMM PR and GR reflectivities at four primary TRMM Ground Validation (GV) sites: Houston, Texas (HSTN); Melbourne, Florida (MELB); Kwajalein, Republic of the Marshall Islands (KWAJ); and Darwin, Australia (DARW). Data from each instrument are resampled into a three-dimensional Cartesian coordinate system. The horizontal displacement during the PR data resampling is corrected. Comparisons suggest that the PR suffers significant attenuation at lower levels especially in convective rain. The attenuation correction performs quite well for convective rain but appears to slightly over-correct in stratiform rain. The PR and GR observations at HSTN, MELB and KWAJ agree to about 1 dB on average with a few exceptions, while the GR at DARW requires +1 to -5 dB calibration corrections. One of the important findings of this study is that the GR calibration offset is dependent on the reflectivity magnitude. Hence, we propose that the calibration should be carried out using a regression correction, rather than simply adding an offset value to all GR reflectivities. This methodology is developed towards TRMM GV efforts to improve the accuracy of tropical rain estimates, and can also be applied to the proposed Global Precipitation Measurement and other related activities over the globe

    Development of a new global rain model for radio regulation

    Get PDF
    Signal attenuation due to rain scatter is the dominant fade mechanism on the majority of high-capacity microwave telecommunications links, both terrestrial and Earth-space. These links carry a large proportion of the information that underpins the way modern life functions and is a vital component of national infrastructure. Many studies have established the virtuous cycle that exists between the development of telecommunications infrastructure and economic growth. Therefore, it is important that rain fade models exist for the design and optimisation of telecommunications networks, globally, but especially in developing countries.A set of internationally recognised and agreed radio propagation models is maintained by the International Telecommunications Union - Radiocommunication Sector (ITU-R) in the form of Recommendations. A fundamental input parameter to many of these models is the point one-minute rain rate exceeded for 0.01% (about 50 minutes) of an average year. Historically, the collection of one-minute rain rates has been rare and so very few regions of the world have measured this important parameter. Where local data are not available, the full distribution of one-minute rain rates, including the 0.01% exceeded rate, can be obtained from Rec. ITU-R P.837-7. The input parameters to this Recommendation are the average monthly temperatures and rain accumulations.The network of meteorological stations is very sparse in equatorial developing countries. This limits the reliability of monthly rain accumulation statistics. ITU-R models are validated against DBSG3: the database of link and meteorological measurements maintained by ITU-R Study Group 3. However, there is very little data from the Tropics in DBSG3. Therefore, there are legitimate concerns that the ITU-R P.837-7 model may not work accurately in the Tropics.This thesis uses rain rates derived from the satellite Earth observation Tropical Rain Measuring Mission, TRMM, to estimate point one-minute rain rate distributions in the Tropics. Two distinct uses of these data have been tested. Initially, the measured distributions of TRMM rain rates were used to estimate rain distributions in the Tropics. A method was developed to transform TRMM rain rate distributions to those needed for radio systems, based on UK rain radar data. In many cases, this method performed better than Rec. ITU-R P.837-7, particularly with databases of rain rates not included in DBSG3. To extend the work to global application, TRMM data were used to estimate the monthly rain rate distributions conditional upon monthly temperature and accumulation, as used in Rec. ITU-R P.837-7. These were then used to replace the analytic distributions in the Recommendation. The method worked well on several databases of measurements, but appeared to be biased in temperate regions. The measured TRMM conditional distributions were replaced by curve-fit approximations and a hybrid method was developed that combined the standard Rec. ITU-R P.837-7 prediction with the curve-fit TRMM prediction. This algorithm performed as well as or better than Rec. ITU-R P.837-7 for most test databases and at most time percentages.The direct use of satellite Earth observation data to produce distributions of point one-minute rain rates is a radical departure from methods used before. This thesis has shown the potential of satellite-based measurements to replace the current methods based on downscaling numerical weather prediction output. In the future when more satellite data are available, spanning the globe, this suggests that direct use of satellite data will become standard

    The frequency of tropical precipitating clouds as observed by the TRMM PR and ICESat/GLAS

    Get PDF
    Convective clouds in the tropics can be grouped into three categories: shallow clouds with cloud-top heights near 2 km above the surface, mid-level congestus clouds with tops near the 0°C level, and deep convective clouds capped by the tropopause. This trimodal distribution is visible in cloud data from the Geoscience Laser Altimeter System (GLAS), carried aboard the Ice, Cloud, and land Elevation Satellite (ICESat), as well as in precipitation data from the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR). Fractional areal coverage (FAC) data is calculated at each of the three levels to describe how often optically thick clouds or precipitation are seen at each level. By dividing the FAC of TRMM PR-observed precipitation by the FAC of thick GLAS/ICESat-observed clouds, the fraction of clouds that are precipitating is derived. The tropical mean precipitating cloud fraction is low: 3.7% for shallow clouds, 6.5% for mid-level clouds, and 24.1% for deep clouds. On a regional basis, the FAC maps created in this study show interesting trends. The presence of nonphysical answers in the PCF graphs, however, suggest that greater study with more precise instruments is needed to properly understand the true precipitating cloud fraction of the tropical atmosphere

    Earth observation for water resource management in Africa

    Get PDF

    Remote Sensing of Precipitation: Part II

    Get PDF
    Precipitation is a well-recognized pillar in the global water and energy balances. The accurate and timely understanding of its characteristics at the global, regional and local scales is indispensable for a clearer insight on the mechanisms underlying the Earth’s atmosphere-ocean complex system. Precipitation is one of the elements that is documented to be greatly affected by climate change. In its various forms, precipitation comprises the primary source of freshwater, which is vital for the sustainability of almost all human activities. Its socio-economic significance is fundamental in managing this natural resource effectively, in applications ranging from irrigation to industrial and household usage. Remote sensing of precipitation is pursued through a broad spectrum of continuously enriched and upgraded instrumentation, embracing sensors which can be ground-based (e.g., weather radars), satellite-borne (e.g., passive or active space-borne sensors), underwater (e.g., hydrophones), aerial, or ship-borne. This volume hosts original research contributions on several aspects of remote sensing of precipitation, including applications which embrace the use of remote sensing in tackling issues such as precipitation estimation, seasonal characteristics of precipitation and frequency analysis, assessment of satellite precipitation products, storm prediction, rain microphysics and microstructure, and the comparison of satellite and numerical weather prediction precipitation products

    Propagation effects handbook for satellite systems design. A summary of propagation impairments on 10 to 100 GHz satellite links with techniques for system design

    Get PDF
    The NASA Propagation Effects Handbook for Satellite Systems Design provides a systematic compilation of the major propagation effects experienced on space-Earth paths in the 10 to 100 GHz frequency band region. It provides both a detailed description of the propagation phenomenon and a summary of the impact of the effect on the communications system design and performance. Chapter 2 through 5 describe the propagation effects, prediction models, and available experimental data bases. In Chapter 6, design techniques and prediction methods available for evaluating propagation effects on space-Earth communication systems are presented. Chapter 7 addresses the system design process and how the effects of propagation on system design and performance should be considered and how that can be mitigated. Examples of operational and planned Ku, Ka, and EHF satellite communications systems are given

    Project MEDSAT: The design of a remote sensing platform for malaria research and control

    Get PDF
    Project MEDSAT was proposed with the specific goal of designing a satellite to remotely sense pertinent information useful in establishing strategies to control malaria. The 340 kg MEDSAT satellite is to be inserted into circular earth orbit aboard the Pegasus Air-Launched Space Booster at an inclination of 21 degrees and an altitude of 473 km. It is equipped with a synthetic aperture radar and a visible thermal/infrared sensor to remotely sense conditions at the target area of Chiapas, Mexico. The orbit is designed so that MEDSAT will pass over the target site twice each day. The data from each scan will be downlinked to Hawaii for processing, resulting in maps indicating areas of high malaria risk. These will be distributed to health officials at the target site. A relatively inexpensive launch by Pegasus and a design using mainly proven, off-the-shelf technology permit a low mission cost, while innovations in the satellite controls and the scientific instruments allow a fairly complex mission

    The 1991 Marshall Space Flight Center research and technology

    Get PDF
    A compilation of 194 articles addressing research and technology activities at the Marshall Space Flight Center (MSFC) is given. Activities are divided into three major areas: advanced studies addressing transportation systems, space systems, and space science activities conducted primarily in the Program Development Directorate; research tasks carried out in the Space Science Laboratory; and technology programs hosted by a wide array of organizations at the Center. The theme for this year's report is 'Building for the Future'

    Microwave Indices from Active and Passive Sensors for Remote Sensing Applications

    Get PDF
    Past research has comprehensively assessed the capabilities of satellite sensors operating at microwave frequencies, both active (SAR, scatterometers) and passive (radiometers), for the remote sensing of Earth’s surface. Besides brightness temperature and backscattering coefficient, microwave indices, defined as a combination of data collected at different frequencies and polarizations, revealed a good sensitivity to hydrological cycle parameters such as surface soil moisture, vegetation water content, and snow depth and its water equivalent. The differences between microwave backscattering and emission at more frequencies and polarizations have been well established in relation to these parameters, enabling operational retrieval algorithms based on microwave indices to be developed. This Special Issue aims at providing an overview of microwave signal capabilities in estimating the main land parameters of the hydrological cycle, e.g., soil moisture, vegetation water content, and snow water equivalent, on both local and global scales, with a particular focus on the applications of microwave indices
    • …
    corecore