46 research outputs found

    Historical overview of the passification method and its applications to nonlinear and adaptive control problems

    Get PDF
    The present survey paper provides a historical overview of the method of passification and its applications to nonlinear and adaptive control problems from 1980 to present days

    ParNMPC – a parallel optimisation toolkit for real-time nonlinear model predictive control

    Get PDF
    Real-time optimisation for nonlinear model predictive control (NMPC) has always been challenging, especially for fast-sampling and large-scale applications. This paper presents an efficient implementation of a highly parallelisable method for NMPC, called ParNMPC. The implementation details of ParNMPC are introduced, including a dedicated discretisation method suitable for parallelisation, a framework that unifies search direction calculation done using Newton's method and the parallel method, line search methods for guaranteeing convergence, and a warm start strategy for the interior-point method. To assess the performance of ParNMPC under different configurations, three experiments including a closed-loop simulation of a quadrotor, a real-world control example of a laboratory helicopter and a closed-loop simulation of a robot manipulator are shown. These experiments show the effectiveness and efficiency of ParNMPC both in serial and parallel

    Adaptive control of plants with input saturation: an approach for performance improvement

    Get PDF
    In this work, a new method for adaptive control of plants with input saturation is presented. The new anti-windup scheme can be shown to result in bounded closed-loop states under certain conditions on the plant and the initial closed-loop states. As an improvement in comparison to existing methods in adaptive control, a new degree of freedom is introduced in the control scheme. It allows to improve the closed-loop response when actually encountering input saturation without changing the closed-loop performance for unconstrained inputs.Diese Arbeit präsentiert eine neue Methode für die adaptive Regelung von Strecken mit Stellgrößenbegrenzung. Für das neue anti-windup Verfahren wird gezeigt, dass die Zustände des Regelkreises begrenzt bleiben, wenn dessen initiale Werte und die Regelstrecke bestimmte Bedingungen erfüllen. Eine Verbesserung im Vergleich zu existierenden Methoden wird durch die Einführung eines zusätzlichen Freiheitsgrades erzielt. Dieser erlaubt die Verbesserung der Regelgüte des geschlossenen Regelkreises, wenn das Eingangssignal sich in der Limitierung befindet, ohne diese sonst zu verändern

    Nonlinear Model Predictive Control for Motion Generation of Humanoids

    Get PDF
    Das Ziel dieser Arbeit ist die Untersuchung und Entwicklung numerischer Methoden zur Bewegungserzeugung von humanoiden Robotern basierend auf nichtlinearer modell-prädiktiver Regelung. Ausgehend von der Modellierung der Humanoiden als komplexe Mehrkörpermodelle, die sowohl durch unilaterale Kontaktbedingungen beschränkt als auch durch die Formulierung unteraktuiert sind, wird die Bewegungserzeugung als Optimalsteuerungsproblem formuliert. In dieser Arbeit werden numerische Erweiterungen basierend auf den Prinzipien der Automatischen Differentiation für rekursive Algorithmen, die eine effiziente Auswertung der dynamischen Größen der oben genannten Mehrkörperformulierung erlauben, hergeleitet, sodass sowohl die nominellen Größen als auch deren ersten Ableitungen effizient ausgewertet werden können. Basierend auf diesen Ideen werden Erweiterungen für die Auswertung der Kontaktdynamik und der Berechnung des Kontaktimpulses vorgeschlagen. Die Echtzeitfähigkeit der Berechnung von Regelantworten hängt stark von der Komplexität der für die Bewegungerzeugung gewählten Mehrkörperformulierung und der zur Verfügung stehenden Rechenleistung ab. Um einen optimalen Trade-Off zu ermöglichen, untersucht diese Arbeit einerseits die mögliche Reduktion der Mehrkörperdynamik und andererseits werden maßgeschneiderte numerische Methoden entwickelt, um die Echtzeitfähigkeit der Regelung zu realisieren. Im Rahmen dieser Arbeit werden hierfür zwei reduzierte Modelle hergeleitet: eine nichtlineare Erweiterung des linearen inversen Pendelmodells sowie eine reduzierte Modellvariante basierend auf der centroidalen Mehrkörperdynamik. Ferner wird ein Regelaufbau zur GanzkörperBewegungserzeugung vorgestellt, deren Hauptbestandteil jeweils aus einem speziell diskretisierten Problem der nichtlinearen modell-prädiktiven Regelung sowie einer maßgeschneiderter Optimierungsmethode besteht. Die Echtzeitfähigkeit des Ansatzes wird durch Experimente mit den Robotern HRP-2 und HeiCub verifiziert. Diese Arbeit schlägt eine Methode der nichtlinear modell-prädiktiven Regelung vor, die trotz der Komplexität der vollen Mehrkörperformulierung eine Berechnung der Regelungsantwort in Echtzeit ermöglicht. Dies wird durch die geschickte Kombination von linearer und nichtlinearer modell-prädiktiver Regelung auf der aktuellen beziehungsweise der letzten Linearisierung des Problems in einer parallelen Regelstrategie realisiert. Experimente mit dem humanoiden Roboter Leo zeigen, dass, im Vergleich zur nominellen Strategie, erst durch den Einsatz dieser Methode eine Bewegungserzeugung auf dem Roboter möglich ist. Neben Methoden der modell-basierten Optimalsteuerung werden auch modell-freie Methoden des verstärkenden Lernens (Reinforcement Learning) für die Bewegungserzeugung untersucht, mit dem Fokus auf den schwierig zu modellierenden Modellunsicherheiten der Roboter. Im Rahmen dieser Arbeit werden eine allgemeine vergleichende Studie sowie Leistungskennzahlen entwickelt, die es erlauben, modell-basierte und -freie Methoden quantitativ bezüglich ihres Lösungsverhaltens zu vergleichen. Die Anwendung der Studie auf ein akademisches Beispiel zeigt Unterschiede und Kompromisse sowie Break-Even-Punkte zwischen den Problemformulierungen. Diese Arbeit schlägt basierend auf dieser Grundlage zwei mögliche Kombinationen vor, deren Eigenschaften bewiesen und in Simulation untersucht werden. Außerdem wird die besser abschneidende Variante auf dem humanoiden Roboter Leo implementiert und mit einem nominellen modell-basierten Regler verglichen

    Models, algorithms and architectures for cooperative manipulation with aerial and ground robots

    Get PDF
    Les dernières années ont vu le développement de recherches portant sur l'interaction physique entre les robots aériens et leur environnement, accompagné de l'apparition de nombreux nouveaux systèmes mécaniques et approches de régulation. La communauté centrée autour de la robotique aérienne observe actuellement un déplacement de paradigmes des approches classiques de guidage, de navigation et de régulation vers des tâches moins triviales, telle le développement de l'interaction physique entre robots aériens et leur environnement. Ceci correspond à une extension des tâches dites de manipulation, du sol vers les airs. Cette thèse contribue au domaine de la manipulation aérienne en proposant un nouveau concept appelé MAGMaS, pour " Multiple Aerial Ground Manipulator System ". Les motivations qui ont conduites à l'association de manipulateurs terrestres et aériens pour effectuer des tâches de manipulation coopérative, résident dans une volonté d'exploiter leurs particularités respectives. Les manipulateurs terrestres apportant leur importante force et les manipulateurs aériens apportant leur vaste espace de travail. La première contribution de cette thèse présente une modélisation rigoureuse des MAGMaS. Les propriétés du système ainsi que ses possibles extensions sont discutées. Les méthodes de planning, d'estimation et de régulation nécessaire à l'exploitation des MAGMaS pour des tâches de manipulation collaborative sont dérivées. Ce travail propose d'exploiter les redondances des MAGMaS grâce à un algorithme optimal d'allocation de forces entre les manipulateurs. De plus, une méthode générale d'estimation de forces pour robots aériens est introduite. Toutes les techniques et les algorithmes présentés dans cette thèse sont intégrés dans une architecture globale, utilisée à la fois pour la simulation et la validation expérimentale. Cette architecture est en outre augmentée par l'addition d'une structure de télé-présence, afin de permettre l'opération à distances des MAGMaS. L'architecture générale est validée par une démonstration de levage de barre, qui est une application représentative des potentiels usages des MAGMaS. Une autre contribution relative au développement des MAGMaS consiste en une étude exploratoire de la flexibilité dans les objets manipulés par un MAGMaS. Un modèle du phénomène vibratoire est dérivé afin de mettre en exergue ses propriétés en termes de contrôle. La dernière contribution de cette thèse consiste en une étude exploratoire sur l'usage des actionneurs à raideur variable dans les robots aériens, dotant ces systèmes d'une compliance mécanique intrinsèque et de capacité de stockage d'énergie. Les fondements théoriques sont associés à la synthèse d'un contrôleur non-linéaire. L'approche proposée est validée par le biais d'expériences reposant sur l'intégration d'un actionneur à raideur variable léger sur un robot aérien.In recent years, the subject of physical interaction for aerial robots has been a popular research area with many new mechanical designs and control approaches being proposed. The aerial robotics community is currently observing a paradigm shift from classic guidance, navigation, and control tasks towards more unusual tasks, for example requesting aerial robots to physically interact with the environment, thus extending the manipulation task from the ground into the air. This thesis contributes to the field of aerial manipulation by proposing a novel concept known has Multiple Aerial-Ground Manipulator System or MAGMaS, including what appears to be the first experimental demonstration of a MAGMaS and opening a new route of research. The motivation behind associating ground and aerial robots for cooperative manipulation is to leverage their respective particularities, ground robots bring strength while aerial robots widen the workspace of the system. The first contribution of this work introduces a meticulous system model for MAGMaS. The system model's properties and potential extensions are discussed in this work. The planning, estimation and control methods which are necessary to exploit MAGMaS in a cooperative manipulation tasks are derived. This works proposes an optimal control allocation scheme to exploit the MAGMaS redundancies and a general model-based force estimation method is presented. All of the proposed techniques reported in this thesis are integrated in a global architecture used for simulations and experimental validation. This architecture is extended by the addition of a tele-presence framework to allow remote operations of MAGMaS. The global architecture is validated by robust demonstrations of bar lifting, an application that gives an outlook of the prospective use of the proposed concept of MAGMaS. Another contribution in the development of MAGMaS consists of an exploratory study on the flexibility of manipulated loads. A vibration model is derived and exploited to showcase vibration properties in terms of control. The last contribution of this thesis consists of an exploratory study on the use of elastic joints in aerial robots, endowing these systems with mechanical compliance and energy storage capabilities. Theoretical groundings are associated with a nonlinear controller synthesis. The proposed approach is validated by experimental work which relies on the integration of a lightweight variable stiffness actuator on an aerial robot

    A generic architecture style for self-adaptive cyber-physical systems

    Get PDF
    Die aktuellen Konzepte zur Gestaltung von Regelungssystemen basieren auf dynamischen Verhaltensmodellen, die mathematische Ansätze wie Differentialgleichungen zur Ableitung der entsprechenden Funktionen verwenden. Diese Konzepte stoßen jedoch aufgrund der zunehmenden Systemkomplexität allmählich an ihre Grenzen. Zusammen mit der Entwicklung dieser Konzepte entsteht eine Architekturevolution der Regelungssysteme. In dieser Dissertation wird eine Taxonomie definiert, um die genannte Architekturevolution anhand eines typischen Beispiels, der adaptiven Geschwindigkeitsregelung (ACC), zu veranschaulichen. Aktuelle ACC-Varianten, die auf der Regelungstheorie basieren, werden in Bezug auf ihre Architekturen analysiert. Die Analyseergebnisse zeigen, dass das zukünftige Regelungssystem im ACC eine umfangreichere Selbstadaptationsfähigkeit und Skalierbarkeit erfordert. Dafür sind kompliziertere Algorithmen mit unterschiedlichen Berechnungsmechanismen erforderlich. Somit wird die Systemkomplexität erhöht und führt dazu, dass das zukünftige Regelungssystem zu einem selbstadaptiven cyber-physischen System wird und signifikante Herausforderungen für die Architekturgestaltung des Systems darstellt. Inspiriert durch Ansätze des Software-Engineering zur Gestaltung von Architekturen von softwareintensiven Systemen wird in dieser Dissertation ein generischer Architekturstil entwickelt. Der entwickelte Architekturstil dient als Vorlage, um vernetzte Architekturen mit Verfolgung der entwickelten Designprinzipien nicht nur für die aktuellen Regelungssysteme, sondern auch für selbstadaptiven cyber-physischen Systeme in der Zukunft zu konstruieren. Unterschiedliche Auslösemechanismen und Kommunikationsparadigmen zur Gestaltung der dynamischen Verhalten von Komponenten sind in der vernetzten Architektur anwendbar. Zur Bewertung der Realisierbarkeit des Architekturstils werden aktuelle ACCs erneut aufgenommen, um entsprechende logische Architekturen abzuleiten und die Architekturkonsistenz im Vergleich zu den originalen Architekturen basierend auf der Regelungstheorie (z. B. in Form von Blockdiagrammen) zu untersuchen. Durch die Anwendung des entwickelten generischen Architekturstils wird in dieser Dissertation eine künstliche kognitive Geschwindigkeitsregelung (ACCC) als zukünftige ACC-Variante entworfen, implementiert und evaluiert. Die Evaluationsergebnisse zeigen signifikante Leistungsverbesserungen des ACCC im Vergleich zum menschlichen Fahrer und aktuellen ACC-Varianten.Current concepts of designing automatic control systems rely on dynamic behavioral modeling by using mathematical approaches like differential equations to derive corresponding functions, and slowly reach limitations due to increasing system complexity. Along with the development of these concepts, an architectural evolution of automatic control systems is raised. This dissertation defines a taxonomy to illustrate the aforementioned architectural evolution relying on a typical example of control application: adaptive cruise control (ACC). Current ACC variants, with their architectures considering control theory, are analyzed. The analysis results indicate that the future automatic control system in ACC requires more substantial self-adaptation capability and scalability. For this purpose, more complicated algorithms requiring different computation mechanisms must be integrated into the system and further increase system complexity. This makes the future automatic control system evolve into a self-adaptive cyber-physical system and consistitutes significant challenges for the system’s architecture design. Inspired by software engineering approaches for designing architectures of software-intensive systems, a generic architecture style is proposed. The proposed architecture style serves as a template by following the developed design principle to construct networked architectures not only for the current automatic control systems but also for self-adaptive cyber-physical systems in the future. Different triggering mechanisms and communication paradigms for designing dynamic behaviors are applicable in the networked architecture. To evaluate feasibility of the architecture style, current ACCs are retaken to derive corresponding logical architectures and examine architectural consistency compared to the previous architectures considering the control theory (e.g., in the form of block diagrams). By applying the proposed generic architecture style, an artificial cognitive cruise control (ACCC) is designed, implemented, and evaluated as a future ACC in this dissertation. The evaluation results show significant performance improvements in the ACCC compared to the human driver and current ACC variants

    Management: A continuing literature survey with indexes, March 1974

    Get PDF
    This special bibliography lists 597 reports, articles, and other documents introduced into the NASA scientific and technical information system in 1973

    Proactive tactical planning approach for large scale engineering and construction projects

    Get PDF
    Large-scale engineering and construction projects are subject to a great level of uncertainty which lead planners to use time buffers and add contingencies to the estimated budget. However, the size of the buffers and the contingency amounts are usually arbitrarily established and projects still encounter severe time and cost overruns. In this paper, a robust planning approach for tactical planning of large-scale engineering and construction projects is proposed. The approach relies on a simple resource buffering strategy applied to the aggregate periods. An extensive simulation-based experiment was conducted to test the robustness and performance of the proposed approach. Results show that the proposed buffering strategy can considerably reduce project cost variations and can provide comparable performance results with those obtained using a disaggregated approach, especially on instances characterized by a large number of resource groups

    Activity Report: Automatic Control 2001

    Get PDF

    Robot Navigation in Human Environments

    Get PDF
    For the near future, we envision service robots that will help us with everyday chores in home, office, and urban environments. These robots need to work in environments that were designed for humans and they have to collaborate with humans to fulfill their tasks. In this thesis, we propose new methods for communicating, transferring knowledge, and collaborating between humans and robots in four different navigation tasks. In the first application, we investigate how automated services for giving wayfinding directions can be improved to better address the needs of the human recipients. We propose a novel method based on inverse reinforcement learning that learns from a corpus of human-written route descriptions what amount and type of information a route description should contain. By imitating the human teachers' description style, our algorithm produces new route descriptions that sound similarly natural and convey similar information content, as we show in a user study. In the second application, we investigate how robots can leverage background information provided by humans for exploring an unknown environment more efficiently. We propose an algorithm for exploiting user-provided information such as sketches or floor plans by combining a global exploration strategy based on the solution of a traveling salesman problem with a local nearest-frontier-first exploration scheme. Our experiments show that the exploration tours are significantly shorter and that our system allows the user to effectively select the areas that the robot should explore. In the second part of this thesis, we focus on humanoid robots in home and office environments. The human-like body plan allows humanoid robots to navigate in environments and operate tools that were designed for humans, making humanoid robots suitable for a wide range of applications. As localization and mapping are prerequisites for all navigation tasks, we first introduce a novel feature descriptor for RGB-D sensor data and integrate this building block into an appearance-based simultaneous localization and mapping system that we adapt and optimize for the usage on humanoid robots. Our optimized system is able to track a real Nao humanoid robot more accurately and more robustly than existing approaches. As the third application, we investigate how humanoid robots can cover known environments efficiently with their camera, for example for inspection or search tasks. We extend an existing next-best-view approach by integrating inverse reachability maps, allowing us to efficiently sample and check collision-free full-body poses. Our approach enables the robot to inspect as much of the environment as possible. In our fourth application, we extend the coverage scenario to environments that also include articulated objects that the robot has to actively manipulate to uncover obstructed regions. We introduce algorithms for navigation subtasks that run highly parallelized on graphics processing units for embedded devices. Together with a novel heuristic for estimating utility maps, our system allows to find high-utility camera poses for efficiently covering environments with articulated objects. All techniques presented in this thesis were implemented in software and thoroughly evaluated in user studies, simulations, and experiments in both artificial and real-world environments. Our approaches advance the state of the art towards universally usable robots in everyday environments.Roboternavigation in menschlichen Umgebungen In naher Zukunft erwarten wir Serviceroboter, die uns im Haushalt, im Büro und in der Stadt alltägliche Arbeiten abnehmen. Diese Roboter müssen in für Menschen gebauten Umgebungen zurechtkommen und sie müssen mit Menschen zusammenarbeiten um ihre Aufgaben zu erledigen. In dieser Arbeit schlagen wir neue Methoden für die Kommunikation, Wissenstransfer und Zusammenarbeit zwischen Menschen und Robotern bei Navigationsaufgaben in vier Anwendungen vor. In der ersten Anwendung untersuchen wir, wie automatisierte Dienste zur Generierung von Wegbeschreibungen verbessert werden können, um die Beschreibungen besser an die Bedürfnisse der Empfänger anzupassen. Wir schlagen eine neue Methode vor, die inverses bestärkendes Lernen nutzt, um aus einem Korpus von von Menschen geschriebenen Wegbeschreibungen zu lernen, wie viel und welche Art von Information eine Wegbeschreibung enthalten sollte. Indem unser Algorithmus den Stil der Wegbeschreibungen der menschlichen Lehrer imitiert, kann der Algorithmus neue Wegbeschreibungen erzeugen, die sich ähnlich natürlich anhören und einen ähnlichen Informationsgehalt vermitteln, was wir in einer Benutzerstudie zeigen. In der zweiten Anwendung untersuchen wir, wie Roboter von Menschen bereitgestellte Hintergrundinformationen nutzen können, um eine bisher unbekannte Umgebung schneller zu erkunden. Wir schlagen einen Algorithmus vor, der Hintergrundinformationen wie Gebäudegrundrisse oder Skizzen nutzt, indem er eine globale Explorationsstrategie basierend auf der Lösung eines Problems des Handlungsreisenden kombiniert mit einer lokalen Explorationsstrategie. Unsere Experimente zeigen, dass die Erkundungstouren signifikant kürzer werden und dass der Benutzer mit unserem System effektiv die zu erkundenden Regionen spezifizieren kann. Der zweite Teil dieser Arbeit konzentriert sich auf humanoide Roboter in Umgebungen zu Hause und im Büro. Der menschenähnliche Körperbau ermöglicht es humanoiden Robotern, in Umgebungen zu navigieren und Werkzeuge zu benutzen, die für Menschen gebaut wurden, wodurch humanoide Roboter für vielfältige Aufgaben einsetzbar sind. Da Lokalisierung und Kartierung Grundvoraussetzungen für alle Navigationsaufgaben sind, führen wir zunächst einen neuen Merkmalsdeskriptor für RGB-D-Sensordaten ein und integrieren diesen Baustein in ein erscheinungsbasiertes simultanes Lokalisierungs- und Kartierungsverfahren, das wir an die Besonderheiten von humanoiden Robotern anpassen und optimieren. Unser System kann die Position eines realen humanoiden Roboters genauer und robuster verfolgen, als es mit existierenden Ansätzen möglich ist. Als dritte Anwendung untersuchen wir, wie humanoide Roboter bekannte Umgebungen effizient mit ihrer Kamera abdecken können, beispielsweise zu Inspektionszwecken oder zum Suchen eines Gegenstands. Wir erweitern ein bestehendes Verfahren, das die nächstbeste Beobachtungsposition berechnet, durch inverse Erreichbarkeitskarten, wodurch wir kollisionsfreie Ganzkörperposen effizient generieren und prüfen können. Unser Ansatz ermöglicht es dem Roboter, so viel wie möglich von der Umgebung zu untersuchen. In unserer vierten Anwendung erweitern wir dieses Szenario um Umgebungen, die auch bewegbare Gegenstände enthalten, die der Roboter aktiv bewegen muss um verdeckte Regionen zu sehen. Wir führen Algorithmen für Teilprobleme ein, die hoch parallelisiert auf Grafikkarten von eingebetteten Systemen ausgeführt werden. Zusammen mit einer neuen Heuristik zur Schätzung von Nutzenkarten ermöglicht dies unserem System Beobachtungspunkte mit hohem Nutzen zu finden, um Umgebungen mit bewegbaren Objekten effizient zu inspizieren. Alle vorgestellten Techniken wurden in Software implementiert und sorgfältig evaluiert in Benutzerstudien, Simulationen und Experimenten in künstlichen und realen Umgebungen. Unsere Verfahren bringen den Stand der Forschung voran in Richtung universell einsetzbarer Roboter in alltäglichen Umgebungen
    corecore