389 research outputs found

    Model design for algorithmic efficiency in electromagnetic sensing

    Get PDF
    The objective of the proposed research is to develop structural changes to the design and application of electromagnetic (EM) sensing models to more efficiently and accurately invert EM measurements to extract parameters for applications such as landmine detection. Two different acquisition modalities are addressed in this research: ground-penetrating radar (GPR) and electromagnetic induction (EMI) sensors. The models needed for practical three-dimensional (3D) spatial imaging typically become impractically large, with up to seven dimensions of parameters that need to be extracted. These parameters include, but are not limited to target type, 3D location, and 3D orientation. The new special structures for these models exploit properties such as shift invariance and tensor representation, which can be combined with strategic inversion techniques, including the Fast Fourier Transform and semidefinite programming. The structures dramatically reduce the amount of computation and can eliminate the need to store up to five dimensions of parameters while still accurately estimating them.Ph.D

    Theoretical Developments in Electromagnetic Induction Geophysics with Selected Applications in the Near Surface

    Get PDF
    Near-surface applied electromagnetic geophysics is experiencing an explosive period of growth with many innovative techniques and applications presently emergent and others certain to be forthcoming. An attempt is made here to bring together and describe some of the most notable advances. This is a difficult task since papers describing electromagnetic induction methods are widely dispersed throughout the scientific literature. The traditional topics discussed herein include modeling, inversion, heterogeneity, anisotropy, target recognition, logging, and airborne electromagnetics (EM). Several new or emerging techniques are introduced including landmine detection, biogeophysics, interferometry, shallow-water electromagnetics, radiomagnetotellurics, and airborne unexploded ordnance (UXO) discrimination. Representative case histories that illustrate the range of exciting new geoscience that has been enabled by the developing techniques are presented from important application areas such as hydrogeology, contamination, UXO and landmines, soils and agriculture, archeology, and hazards and climat

    Non-convex regularization in remote sensing

    Get PDF
    In this paper, we study the effect of different regularizers and their implications in high dimensional image classification and sparse linear unmixing. Although kernelization or sparse methods are globally accepted solutions for processing data in high dimensions, we present here a study on the impact of the form of regularization used and its parametrization. We consider regularization via traditional squared (2) and sparsity-promoting (1) norms, as well as more unconventional nonconvex regularizers (p and Log Sum Penalty). We compare their properties and advantages on several classification and linear unmixing tasks and provide advices on the choice of the best regularizer for the problem at hand. Finally, we also provide a fully functional toolbox for the community.Comment: 11 pages, 11 figure

    Classification of Metallic Targets Using a Walk-Through Metal Detection Portal

    Get PDF
    Metal detectors have been used for a long time for treasure hunting, security screening, and finding buried objects such as landmines or unexploded ordnance. Walk-through metal detection (WTMD) portals are used for making sure that forbidden or threatening metallic items, such as knives or guns, are not carried into secure areas at critical locations such as airports, court rooms, embassies, and prisons.The 9/11 terrorist act has given rise to stricter rules for aviation security worldwide, and the ensuing tighter security procedures have meant that passengers face more delays at airports. Moreover, the fear of terrorism has led to the adoption of security screening technology in a variety of places such as railway and coach stations, sports events, malls, and nightclubs.However, the current WTMD technology and scanning procedures at airports require that all metallic items be removed from clothing prior to scanning, causing inconvenience. Furthermore, alarms are triggered by innocuous items such as shoe shanks and artificial joints, along with overlooked items such as jewellery and belts. These lead to time- consuming, manual pat-down searches, which are found inconvenient, uncomfortable, and obtrusive by some.Modern WTMD portals are very sensitive devices that can detect items with only small amounts of metal, but they currently lack the ability to further classify the detected item. However, if a WTMD portal were able to classify objects reliably into, e.g., “knives”, “belts”, “keys”, the need for removing the items prior to screening would disappear, enabling a paradigm shift in the field of security screening.This thesis is based on novel research presented in five peer-reviewed publications. The scope of the problem has been narrowed down to a situation in which only one metallic item is carried through the portal at a time. However, the methods and results presented in this thesis can be generalized into a multi-object scenario. It has been shown that by using a WTMD portal and the magnetic polarisability tensor, it is possible to accurately distinguish between threatening and innocuous targets and to classify them into 10 to 13 arbitrary classes. Furthermore, a data library consisting of natural walk-throughs has been collected, and it has been demonstrated that the walk-through data collected with the above portal are subject to phenomena that might affect classification, in particular a bias and the so-called body effect. However, the publications show that, by using realistic walk-through data, high classification accuracy can be maintained regardless of the above problems. Furthermore, a self-diagnostics method for detecting unreliable samples has also been presented with potential to significantly increase classification accuracy and the reliability of decision making.The contributions presented in this thesis have a variety of implications in the field of WTMD-based security screening. The novel technology offers more information, such as an indication of the probable cause of the alarm, to support the conventional screening procedure. Moreover, eliminating the need for removing all metallic items prior to screening enables design of new products for scenarios such as sports events, where conventional screening procedures might be inconvenient, creating thus new business possibilities for WTMD manufacturing companies.The positive results give rise to a variety of future research topics such as using wideband data, enabling simultaneous classification of multiple objects, and developing the portal coil design to diminish signal nonlinearities. Furthermore, the ideas and the basic principles presented in this thesis may be applied to other metal detection applications, such as humanitarian demining

    AC electrokinetic studies of virus host interactions

    Get PDF
    Abstract available p. ii

    Enhancement of an Optical Fiber Sensor: Source Separation Based on Brillouin Spectrum

    No full text
    International audienceDistributed optical fiber sensors have gained an increasingly prominent role in structural-health monitoring. These are composed of an optical fiber cable in which a light impulse is launched by an opto-electronic device. The scattered light is of interest in the spectral domain: the spontaneous Brillouin spectrum is centered on the Brillouin frequency, which is related to the local strain and temperature changes in the optical fiber. When coupled with an industrial Brillouin optical time-domain analyzer (B-OTDA), an optical fiber cable can provide distributed measurements of strain and/or temperature, with a spatial resolution over kilometers of 40 cm. This paper focuses on the functioning of a B-OTDA device, where we address the problem of the improvement of spatial resolution. We model a Brillouin spectrum measured within an integration base of 1 m as the superposition of the elementary spectra contained in the base. Then, the spectral distortion phenomenon can be mathematically explained: if the strain is not constant within the integration base, the Brillouin spectrum is composed of several elementary spectra that are centered on different local Brillouin frequencies. We propose a source separation methodology approach to decompose a measured Brillouin spectrum into its spectral components. The local Brillouin frequencies and amplitudes are related to a portion of the integration base where the strain is constant. A layout algorithm allows the estimation of a strain profile with new spatial resolution chosen by the user. Numerical tests enable the finding of the optimal parameters, which provides a reduction to 1 cm of the 40-cm spatial resolution of the B-OTDA device. These parameters are highlighted during a comparison with a reference strain profile acquired by a 5-cm-resolution Rayleigh scatter analyzer under controlled conditions. In comparison with the B-OTDA strain profile, our estimated strain profile has better accuracy, with centimeter spatial resolut ion
    corecore