907 research outputs found

    Evorus: A Crowd-powered Conversational Assistant Built to Automate Itself Over Time

    Full text link
    Crowd-powered conversational assistants have been shown to be more robust than automated systems, but do so at the cost of higher response latency and monetary costs. A promising direction is to combine the two approaches for high quality, low latency, and low cost solutions. In this paper, we introduce Evorus, a crowd-powered conversational assistant built to automate itself over time by (i) allowing new chatbots to be easily integrated to automate more scenarios, (ii) reusing prior crowd answers, and (iii) learning to automatically approve response candidates. Our 5-month-long deployment with 80 participants and 281 conversations shows that Evorus can automate itself without compromising conversation quality. Crowd-AI architectures have long been proposed as a way to reduce cost and latency for crowd-powered systems; Evorus demonstrates how automation can be introduced successfully in a deployed system. Its architecture allows future researchers to make further innovation on the underlying automated components in the context of a deployed open domain dialog system.Comment: 10 pages. To appear in the Proceedings of the Conference on Human Factors in Computing Systems 2018 (CHI'18

    Survey on Evaluation Methods for Dialogue Systems

    Get PDF
    In this paper we survey the methods and concepts developed for the evaluation of dialogue systems. Evaluation is a crucial part during the development process. Often, dialogue systems are evaluated by means of human evaluations and questionnaires. However, this tends to be very cost and time intensive. Thus, much work has been put into finding methods, which allow to reduce the involvement of human labour. In this survey, we present the main concepts and methods. For this, we differentiate between the various classes of dialogue systems (task-oriented dialogue systems, conversational dialogue systems, and question-answering dialogue systems). We cover each class by introducing the main technologies developed for the dialogue systems and then by presenting the evaluation methods regarding this class

    Neural approaches to dialog modeling

    Full text link
    Cette thèse par article se compose de quatre articles qui contribuent au domaine de l’apprentissage profond, en particulier dans la compréhension et l’apprentissage des ap- proches neuronales des systèmes de dialogue. Le premier article fait un pas vers la compréhension si les architectures de dialogue neuronal couramment utilisées capturent efficacement les informations présentes dans l’historique des conversations. Grâce à une série d’expériences de perturbation sur des ensembles de données de dialogue populaires, nous constatons que les architectures de dialogue neuronal couramment utilisées comme les modèles seq2seq récurrents et basés sur des transformateurs sont rarement sensibles à la plupart des perturbations du contexte d’entrée telles que les énoncés manquants ou réorganisés, les mots mélangés, etc. Le deuxième article propose d’améliorer la qualité de génération de réponse dans les systèmes de dialogue de domaine ouvert en modélisant conjointement les énoncés avec les attributs de dialogue de chaque énoncé. Les attributs de dialogue d’un énoncé se réfèrent à des caractéristiques ou des aspects discrets associés à un énoncé comme les actes de dialogue, le sentiment, l’émotion, l’identité du locuteur, la personnalité du locuteur, etc. Le troisième article présente un moyen simple et économique de collecter des ensembles de données à grande échelle pour modéliser des systèmes de dialogue orientés tâche. Cette approche évite l’exigence d’un schéma d’annotation d’arguments complexes. La version initiale de l’ensemble de données comprend 13 215 dialogues basés sur des tâches comprenant six domaines et environ 8 000 entités nommées uniques, presque 8 fois plus que l’ensemble de données MultiWOZ populaire.This thesis by article consists of four articles which contribute to the field of deep learning, specifically in understanding and learning neural approaches to dialog systems. The first article takes a step towards understanding if commonly used neural dialog architectures effectively capture the information present in the conversation history. Through a series of perturbation experiments on popular dialog datasets, wefindthatcommonly used neural dialog architectures like recurrent and transformer-based seq2seq models are rarely sensitive to most input context perturbations such as missing or reordering utterances, shuffling words, etc. The second article introduces a simple and cost-effective way to collect large scale datasets for modeling task-oriented dialog systems. This approach avoids the requirement of a com-plex argument annotation schema. The initial release of the dataset includes 13,215 task-based dialogs comprising six domains and around 8k unique named entities, almost 8 times more than the popular MultiWOZ dataset. The third article proposes to improve response generation quality in open domain dialog systems by jointly modeling the utterances with the dialog attributes of each utterance. Dialog attributes of an utterance refer to discrete features or aspects associated with an utterance like dialog-acts, sentiment, emotion, speaker identity, speaker personality, etc. The final article introduces an embedding-free method to compute word representations on-the-fly. This approach significantly reduces the memory footprint which facilitates de-ployment in on-device (memory constraints) devices. Apart from being independent of the vocabulary size, we find this approach to be inherently resilient to common misspellings

    Bringing together commercial and academic perspectives for the development of intelligent AmI interfaces

    Get PDF
    The users of Ambient Intelligence systems expect an intelligent behavior from their environment, receiving adapted and easily accessible services and functionality. This can only be possible if the communication between the user and the system is carried out through an interface that is simple (i.e. which does not have a steep learning curve), fluid (i.e. the communication takes place rapidly and effectively), and robust (i.e. the system understands the user correctly). Natural language interfaces such as dialog systems combine the previous three requisites, as they are based on a spoken conversation between the user and the system that resembles human communication. The current industrial development of commercial dialog systems deploys robust interfaces in strictly defined application domains. However, commercial systems have not yet adopted the new perspective proposed in the academic settings, which would allow straightforward adaptation of these interfaces to various application domains. This would be highly beneficial for their use in AmI settings as the same interface could be used in varying environments. In this paper, we propose a new approach to bridge the gap between the academic and industrial perspectives in order to develop dialog systems using an academic paradigm while employing the industrial standards, which makes it possible to obtain new generation interfaces without the need for changing the already existing commercial infrastructures. Our proposal has been evaluated with the successful development of a real dialog system that follows our proposed approach to manage dialog and generates code compliant with the industry-wide standard VoiceXML.Research funded by projects CICYT TIN2011-28620-C02-01, CICYT TEC2011-28626-C02-02, CAM CONTEXTS (S2009/TIC-1485), and DPS2008- 07029-C02-02.Publicad

    A framework for improving error detection and correction in spoken dialog systems

    Get PDF
    Despite The Recent Improvements In Performance And Reliably Of The Different Components Of Dialog Systems, It Is Still Crucial To Devise Strategies To Avoid Error Propagation From One Another. In This Paper, We Contribute A Framework For Improved Error Detection And Correction In Spoken Conversational Interfaces. The Framework Combines User Behavior And Error Modeling To Estimate The Probability Of The Presence Of Errors In The User Utterance. This Estimation Is Forwarded To The Dialog Manager And Used To Compute Whether It Is Necessary To Correct Possible Errors. We Have Designed An Strategy Differentiating Between The Main Misunderstanding And Non-Understanding Scenarios, So That The Dialog Manager Can Provide An Acceptable Tailored Response When Entering The Error Correction State. As A Proof Of Concept, We Have Applied Our Proposal To A Customer Support Dialog System. Our Results Show The Appropriateness Of Our Technique To Correctly Detect And React To Errors, Enhancing The System Performance And User Satisfaction.This work was supported in part by Projects MINECO TEC2012-37832-C02-01, CICYT TEC2011-28626-C02-02, CAM CONTEXTS (S2009/TIC-1485)

    A proposal for the development of adaptive spoken interfaces to access the Web

    Get PDF
    Spoken dialog systems have been proposed as a solution to facilitate a more natural human–machine interaction. In this paper, we propose a framework to model the user׳s intention during the dialog and adapt the dialog model dynamically to the user needs and preferences, thus developing more efficient, adapted, and usable spoken dialog systems. Our framework employs statistical models based on neural networks that take into account the history of the dialog up to the current dialog state in order to predict the user׳s intention and the next system response. We describe our proposal and detail its application in the Let׳s Go spoken dialog system.Work partially supported by Projects MINECO TEC2012-37832- C02-01, CICYT TEC2011-28626-C02-02, CAM CONTEXTS (S2009/ TIC-1485

    Learning Personalized User Preference from Cold Start in Multi-turn Conversations

    Full text link
    This paper presents a novel teachable conversation interaction system that is capable of learning users preferences from cold start by gradually adapting to personal preferences. In particular, the TAI system is able to automatically identify and label user preference in live interactions, manage dialogue flows for interactive teaching sessions, and reuse learned preference for preference elicitation. We develop the TAI system by leveraging BERT encoder models to encode both dialogue and relevant context information, and build action prediction (AP), argument filling (AF) and named entity recognition (NER) models to understand the teaching session. We adopt a seeker-provider interaction loop mechanism to generate diverse dialogues from cold-start. TAI is capable of learning user preference, which achieves 0.9122 turn level accuracy on out-of-sample dataset, and has been successfully adopted in production.Comment: preference, personalization, cold-start, dialogue, LLM. embeddin
    corecore