160 research outputs found

    Stochastic mapping for chemical plume source localization with application to autonomous hydrothermal vent discovery

    Get PDF
    Thesis (Ph. D.)--Joint Program in Oceanography/Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Dept. of Mechanical Engineering; and the Woods Hole Oceanographic Institution), 2007.Includes bibliographical references (p. 313-325).This thesis presents a stochastic mapping framework for autonomous robotic chemical plume source localization in environments with multiple sources. Potential applications for robotic chemical plume source localization include pollution and environmental monitoring, chemical plant safety, search and rescue, anti-terrorism, narcotics control, explosive ordinance removal, and hydrothermal vent prospecting. Turbulent flows make the spatial relationship between the detectable manifestation of a chemical plume source, the plume itself, and the location of its source inherently uncertain. Search domains with multiple sources compound this uncertainty because the number of sources as well as their locations is unknown a priori. Our framework for stochastic mapping is an adaptation of occupancy grid mapping where the binary state of map nodes is redefined to denote either the presence (occupancy) or absence of an active plume source. A key characteristic of the chemical plume source localization problem is that only a few sources are expected in the search domain. The occupancy grid framework allows for both plume detections and non-detections to inform the estimated state of grid nodes in the map, thereby explicitly representing explored but empty portions of the domain as well as probable source locations.(cont.) However, sparsity in the expected number of occupied grid nodes strongly violates a critical conditional independence assumption required by the standard Bayesian recursive map update rule. While that assumption makes for a computationally attractive algorithm, in our application it results in occupancy grid maps that are grossly inconsistent with the assumption of a small number of occupied cells. To overcome this limitation, several alternative occupancy grid update algorithms are presented, including an exact solution that is computationally tractable for small numbers of detections and an approximate recursive algorithm with improved performance relative to the standard algorithm but equivalent computational cost. Application to hydrothermal plume data collected by the autonomous underwater vehicle ABE during vent prospecting operations in both the Pacific and Atlantic oceans verifies the utility of the approach. The resulting maps enable nested surveys for homing-in on seafloor vent sites to be carried out autonomously. This eliminates inter-dive processing, recharging of batteries, and time spent deploying and recovering the vehicle that would otherwise be necessary with survey design directed by human operators.by Michael V. Jakuba.Ph.D

    Constructing a distributed AUV network for underwater plume-tracking operations

    Get PDF
    © The Author(s), 2012. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in International Journal of Distributed Sensor Networks 2012 (2012): 191235, doi:10.1155/2012/191235.In recent years, there has been significant concern about the impacts of offshore oil spill plumes and harmful algal blooms on the coastal ocean environment and biology, as well as on the human populations adjacent to these coastal regions. Thus, it has become increasingly important to determine the 3D extent of these ocean features (“plumes”) and how they evolve over time. The ocean environment is largely inaccessible to sensing directly by humans, motivating the need for robots to intelligently sense the ocean for us. In this paper, we propose the use of an autonomous underwater vehicle (AUV) network to track and predict plume shape and motion, discussing solutions to the challenges of spatiotemporal data aliasing (coverage versus resolution), underwater communication, AUV autonomy, data fusion, and coordination of multiple AUVs. A plume simulation is also developed here as the first step toward implementing behaviors for autonomous, adaptive plume tracking with AUVs, modeling a plume as a sum of Fourier orders and examining the resulting errors. This is then extended to include plume forecasting based on time variations, and future improvements and implementation are discussed.This research was made with Government support under and awarded by DoD, Air Force Office of Scientific Research, National Defense Science and Engineering Graduate (NDSEG) Fellowship, 32 CFR 168a

    Oceanus.

    Get PDF
    v. 38, no.1 (1995

    Effect of seismicity and diking on hydrothermal circulation at mid-ocean ridges

    Get PDF
    Seafloor hydrothermal systems play a key role in Earth s energy and geochemical budgets. They also support the existence and development of complex chemosynthetic biological ecosystems that use the mineral-laden fluids as a source of energy and nutrients. This dissertation focuses on two inter-related topics: (1) the heat output at mid-ocean ridge (MOR) hydrothermal sites, and (2) the hydrothermal response to earthquakes at mid-ocean ridges. The response of mid-ocean ridge hydrothermal systems to seismic and magmatic activity could provide a means of using seafloor observations to assess processes occurring at crustal depths. Three decades of study of the ocean floor have made clear that tectonic/volcanic perturbations and changes in the hydrothermal activity are correlated. Yet, this relationship is still highly misunderstood. In this dissertation, we developed a mathematical model of hydrothermal circulation affected by magmatic and/or tectonic events occurring at depth. We showed that the perturbations they generate need not propagate through the entire upflow zone, as previously suggested, but need only affect the movement of the boundary layers. In this case, the fluid residence time in the discharge zone is on the order of years. The determination of heat output at MOR hydrothermal sites provides important constraints on the physics of these processes. Yet, such measurements are still very limited, available only for ~30 sites out of the ~10^3 estimated worldwide. This dissertation reports the first measurements of hydrothermal heat output at 9°50' N on the East Pacific Rise (EPR), which has been the most intensively studied site for the past 20 years (~10^2 expeditions). The values we obtained helped constraining the afore-mentioned mathematical model, which was tested based on the March 1995 microearthquake swarm near 9°50' N, EPR. Our results showed that the current interpretation based on a thermal cracking episode at the bottom of the upflow zone, may be incorrect. We argue that a diking scenario better explains the seismic and temperature data, while being consistent with the mechanics of inflation of the axial magma chamber in the 9°50' N, EPR area between two major eruptions, in 1991 and 2006.Ph.D.Committee Chair: Germanovich, Leonid; Committee Co-Chair: Lowell, Robert; Committee Member: Di Iorio, Daniela; Committee Member: Huang, Haiying; Committee Member: Rix, Glenn; Committee Member: Xu, Wenyu

    Autonomous & adaptive oceanographic feature tracking on board autonomous underwater vehicles

    Get PDF
    Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February 2015The capabilities of autonomous underwater vehicles (AUVs) and their ability to perform tasks both autonomously and adaptively are rapidly improving, and the desire to quickly and efficiently sample the ocean environment as Earth's climate changes and natural disasters occur has increased significantly in the last decade. As such, this thesis proposes to develop a method for single and multiple AUVs to collaborate autonomously underwater while autonomously adapting their motion to changes in their local environments, allowing them to sample and track various features of interest with greater efficiency and synopticity than previously possible with preplanned AUV or ship-based surveys. This concept is demonstrated to work in field testing on multiple occasions: with a single AUV autonomously and adaptively tracking the depth range of a thermocline or acousticline, and with two AUVs coordinating their motion to collect a data set in which internal waves could be detected. This research is then taken to the next level by exploring the problem of adaptively and autonomously tracking spatiotemporally dynamic underwater fronts and plumes using individual and autonomously collaborating AUVs.Government support under and awarded by DoD, Air Force Office of Scientific Research, NDSEG Fellowship, 32 CFR 168a, U.S. Office of Naval Research (ONR) GOATS ’11 (N00014-11-1-0097) and GOATS ’14 (N00014-14-1-0214) projects, ONR TechSolutions Program Office (Lightweight NSW UUV program)—Technical Support, Naval Undersea Warfare Center (NUWC) Division, Newport (Code 25)—Technical Support and Logistic

    Surface emergence of glacial plumes determined by fjord stratification

    Get PDF
    © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in De Andres, E., Slater, D. A., Otero, J., Das, S., Navarro, F., & Straneo, F. Surface emergence of glacial plumes determined by fjord stratification. Cryosphere, 14(6), (2020): 1951-1969, doi:10.5194/tc-14-1951-2020.Meltwater and sediment-laden plumes at tidewater glaciers, resulting from the localized subglacial discharge of surface melt, influence submarine melting of the glacier and the delivery of nutrients to the fjord's surface waters. It is usually assumed that increased subglacial discharge will promote the surfacing of these plumes. Here, at a western Greenland tidewater glacier, we investigate the counterintuitive observation of a non-surfacing plume in July 2012 (a year of record surface melting) compared to the surfacing of the plume in July 2013 (an average melt year). We combine oceanographic observations, subglacial discharge estimates and an idealized plume model to explain the observed plumes' behavior and evaluate the relative impact of fjord stratification and subglacial discharge on plume dynamics. We find that increased fjord stratification prevented the plume from surfacing in 2012, show that the fjord was more stratified in 2012 due to increased freshwater content and speculate that this arose from an accumulation of ice sheet surface meltwater in the fjord in this record melt year. By developing theoretical scalings, we show that fjord stratification in general exerts a dominant control on plume vertical extent (and thus surface expression), so that studies using plume surface expression as a means of diagnosing variability in glacial processes should account for possible changes in stratification. We introduce the idea that, despite projections of increased surface melting over Greenland, the appearance of plumes at the fjord surface could in the future become less common if the increased freshwater acts to stratify fjords around the Greenland ice sheet. We discuss the implications of our findings for nutrient fluxes, trapping of atmospheric CO2 and the properties of water exported from Greenland's fjords.This research has been supported by the Ministerio de Educación, Cultura y Deporte (grant no. FPU14/04109), the National Science Foundation (grant no. 1418256), the Ministerio de Economía, Industria y Competitividad, Gobierno de España (grant no. CTM2017-84441-R), and the Horizon 2020 Research and Innovation Programme (grant no. 727890)
    corecore