948 research outputs found

    Olaj és nyersanyagpiacok makrogazdasági összefüggései = Oil and commodity markets’ relationship with the macroeconomy

    Get PDF
    Az értekezés három fő részből áll. Előbb az olajár makrogazdasági hatásainak időbeli alakulását, valamint a korábbiakhoz képest mérsékeltebb stagflációs nyomás okait kutatom az Egyesült Államok példáján. Ezt követően Svédország, illetve Norvégia esetén folytonos wavelet transzformációkkal vizsgálom az olajár és a fontosabb makrogazdasági változók közti kapcsolatot, időben és frekvenciatérben egyaránt. Végül a WTI olajtípus spot árának rövid távú (1-3 napos), valós idejű előrejelezhetőségét tesztelem a modellek egy meglehetősen széles körén, idősorelemzési és gépi tanulásos módszerek felhasználásával

    Physical Models for Solar Cycle Predictions

    Get PDF
    The dynamic activity of stars such as the Sun influences (exo)planetary space environments through modulation of stellar radiation, plasma wind, particle and magnetic fluxes. Energetic solar-stellar phenomena such as flares and coronal mass ejections act as transient perturbations giving rise to hazardous space weather. Magnetic fields – the primary driver of solar-stellar activity – are created via a magnetohydrodynamic dynamo mechanism within stellar convection zones. The dynamo mechanism in our host star – the Sun – is manifest in the cyclic appearance of magnetized sunspots on the solar surface. While sunspots have been directly observed for over four centuries, and theories of the origin of solar-stellar magnetism have been explored for over half a century, the inability to converge on the exact mechanism(s) governing cycle to cycle fluctuations and inconsistent predictions for the strength of future sunspot cycles have been challenging for models of the solar cycles. This review discusses observational constraints on the solar magnetic cycle with a focus on those relevant for cycle forecasting, elucidates recent physical insights which aid in understanding solar cycle variability, and presents advances in solar cycle predictions achieved via data-driven, physics-based models. The most successful prediction approaches support the Babcock-Leighton solar dynamo mechanism as the primary driver of solar cycle variability and reinforce the flux transport paradigm as a useful tool for modelling solar-stellar magnetism

    Discovering Causal Relations and Equations from Data

    Full text link
    Physics is a field of science that has traditionally used the scientific method to answer questions about why natural phenomena occur and to make testable models that explain the phenomena. Discovering equations, laws and principles that are invariant, robust and causal explanations of the world has been fundamental in physical sciences throughout the centuries. Discoveries emerge from observing the world and, when possible, performing interventional studies in the system under study. With the advent of big data and the use of data-driven methods, causal and equation discovery fields have grown and made progress in computer science, physics, statistics, philosophy, and many applied fields. All these domains are intertwined and can be used to discover causal relations, physical laws, and equations from observational data. This paper reviews the concepts, methods, and relevant works on causal and equation discovery in the broad field of Physics and outlines the most important challenges and promising future lines of research. We also provide a taxonomy for observational causal and equation discovery, point out connections, and showcase a complete set of case studies in Earth and climate sciences, fluid dynamics and mechanics, and the neurosciences. This review demonstrates that discovering fundamental laws and causal relations by observing natural phenomena is being revolutionised with the efficient exploitation of observational data, modern machine learning algorithms and the interaction with domain knowledge. Exciting times are ahead with many challenges and opportunities to improve our understanding of complex systems.Comment: 137 page
    corecore